Development of MATLAB/Simulink based model of PV system with MPPT

Author(s):  
Mukesh Kumar ◽  
Mohit Kachhwaya ◽  
Bhavnesh Kumar
Keyword(s):  
2019 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Jama S. Adam ◽  
Adebayo A. Fashina

This work presents the design of a 100kVA hybrid solar power system for Gollis University’s administrative block, Hargeisa, Somaliland. Prior to the system design, a preliminary field work on the site was performed to essentially measure the power/energy consumption of Gollis university’s administrative block. The results from the site survey was then used to select the appropriate equipment and instrument required for the design. This was achieved by calculating the energy consumption and then sizing the solar panel, battery, inverter and charge controller. The battery back-up time analysis at full load was also carried out to determine the effectiveness of the inverter size chosen. The inverter system was modeled and simulated using the MATLAB/Simulink software package. The simulation was used to study the reliability of the size of inverter chosen for the design, since the failure of most photovoltaic systems is ascribed to inverter failures. The results from the MATLAB/Simulink simulation showed that the inverter selected for the hybrid PV system has the ability to maximize the power produced from the PV array, and to generate sinusoidal AC voltage with minimum output distortion. The results also revealed that the PV solar system can provide a back-up time of 47.47 hours. The implications of the results are then discussed before presenting the recommendations for future works.  


2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


2013 ◽  
Vol 345 ◽  
pp. 359-363
Author(s):  
Shi Die Shen ◽  
Wei Yao

In this paper, photovoltaic industry is introduced briefly. For the shortcomings of the fixed-step perturbation and observation (P&O) method in the maximum power point tracking (MPPT) technology, a variable-step P&O method is proposed and the algorithm is further improved. In the PV system, the MPPT is realized by changing the duty cycle of switching tube in the Boost converter. The simulations were conducted in the Matlab/Simulink platform. At last, the experimental results on the 3kw prototype showed that the new MPPT algorithm is effective.


2018 ◽  
Vol 7 (3.31) ◽  
pp. 30
Author(s):  
Muzeeb Khan Patan ◽  
P Udaya Bhanu ◽  
M D. Azahar Ahmed

Inverters have many Technological improvements in their maximum power handling capabilities by using renewable energy sources. Multilevel inverters give effective and efficient interface for renewable energy sources and perform Transformer-less operation and increase the power quantity and quality of voltage of the PV system. In this paper, the benefits of H-bridge inverters including the total harmonic distortions are discussed. This paper has primarily focused on Sinusoidal PWM and worked on the carrier based phase disposition techniques. The performances of modulation schemes are compared. Simulations were done using MATLAB Simulink for the given PWM techniques.  


2017 ◽  
Vol 14 (1) ◽  
pp. 577-584
Author(s):  
S Kamalakkannan ◽  
D Kirubakaran

In this work, a grid system attached Z-Source inverters for PV system with perturb and observation algorithm is projected for changing irradiance and to use full obtainable PV power. The boost operation of PV power is attained in inverter using the perception of shoot-through time period. The PV inverter is an important component in a PV system. It executes the conversion of variable DC output of the PV panel module(s) in to pure sinusoidal 50Hz AC current. This pure sinusoidal AC in turn is fed to the grid connected system. The simulation is carried out in Matlab/Simulink platform and benefits of projected systems are emphasised with the aid of simulation results.


2021 ◽  
Vol 18 (2(Suppl.)) ◽  
pp. 0907
Author(s):  
Nurhazwani Anang ◽  
Mohammad Safwan AB Hamid ◽  
Wan Mariam Wan Muda

Renewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of the actual smart grid system is high in cost. Thus, simulation and modelling of the system is important to see the capability of the actual system before being employed. Since the smart grid and its components are usually modeled using MATLAB/Simulink, the communication between MATLAB/Simulink, IoT platform such as ThingSpeak and mobile application is crucial to be explored to gain a better understanding of the features of the smart grid. To achieve the objectives, there are five main steps which are simulation of grid-connected photovoltaic (PV) system to generate data to be monitored and controlled using HOMER software, then, development of monitoring on ThingSpeak and mobile application using MIT App Inventor 2.  Next, the control system is developed on mobile application and the communication on how data are transferred between all the softwares are set up. The results show that all the seletected parameters can be monitored in real-time successfully. The developed mobile application can be used to control the MATLAB/Simulink in two modes. During automatic mode, ThingSpeak controls the MATLAB/Simulink by giving a zero signal (OFF) if load demand is less than the power generated by PV and a one signal (ON) if the load demand is greater than PV power. During manual mode, consumer can send ON or OFF signal to MATLAB/Simulink via the mobile application unconditionally. It is hoped that the proposed system will bring many benefits in modeling a complete smart grid system in MATLAB/Simulink.


Author(s):  
Ameerul A. J. Jeman ◽  
Naeem M. S. Hannoon ◽  
Nabil Hidayat ◽  
Mohamed M. H. Adam ◽  
Ismail Musirin ◽  
...  

<p><span>This paper presents an analysis in Matlab/Simulink of a three-phase photovoltaic system under balance and unbalance faults in Matlab/Simulink. The aim of this paper is to investigate the performance of the system under various types of fault. The simulation involved various types of faults occurring at different distances from the point of common coupling of the PV system. This paper also aimed to identify what type of fault that may severely damage the system. The simulation results presented in this paper show that the three-phase fault in the microgrid was severely affecting the system since it involved all the three phases of the system while the distance of the fault occurrence is less influenced in the system. The purpose of this research is to observe the effect on the system based on the types of faults occur and the distance faults occur.</span></p>


Sign in / Sign up

Export Citation Format

Share Document