scholarly journals Investigation of PV Connected Multilevel Cascaded H-Bridge Inverter Using Disposition Techniques

2018 ◽  
Vol 7 (3.31) ◽  
pp. 30
Author(s):  
Muzeeb Khan Patan ◽  
P Udaya Bhanu ◽  
M D. Azahar Ahmed

Inverters have many Technological improvements in their maximum power handling capabilities by using renewable energy sources. Multilevel inverters give effective and efficient interface for renewable energy sources and perform Transformer-less operation and increase the power quantity and quality of voltage of the PV system. In this paper, the benefits of H-bridge inverters including the total harmonic distortions are discussed. This paper has primarily focused on Sinusoidal PWM and worked on the carrier based phase disposition techniques. The performances of modulation schemes are compared. Simulations were done using MATLAB Simulink for the given PWM techniques.  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.


2020 ◽  
Vol 24 (1) ◽  
pp. 357-367
Author(s):  
Liva Asere ◽  
Andra Blumberga

AbstractThe energy efficiency – indoor air quality dilemma is well known and the main drawback to operate the mechanical ventilation is electricity costs as concluded from previous studies. Educational buildings are one of the places where future taxpayers spend a lot of time. This paper aims to study an alternative solution on how to reduce energy efficiency – indoor air quality dilemma in educational buildings by adopting systems that use renewable energy sources. A typical education building in Latvia is taken as a case study by changing it from a consumer to prosumer. This building type has a specific electricity usage profile that makes the choice of photovoltaics (PV) power quite challenging so the various power options have been analysed and used for an electricity solution. Also, the more decentralised preference is chosen – disconnect from a public heating provider and using a local system with a pellet boiler. Educational buildings using PV can reduce the electricity tariff, but the payback periods are still not very satisfactory without subsidies. The average electricity tariff per month varies between scenarios and the best one is for the scenario with 30 kW installed power. The educational building partly using 16 kW PV system reduces not only its bill for electricity but also reduces CO2 emissions by around 36 tons. The education buildings as energy prosumers using renewable energy sources are reducing GHG emissions by having high indoor air quality.


Author(s):  
Mahesh Abdare

Abstract: DC Microgrid is going to be a very important part of the Distribution system soon. The given circumstances have forced us to find how to utilize renewable energy sources in the integration to increase its reliability in our day-to-day life. This paper gives a good idea of the DC Microgrid and various methods being used for the controlling part of it. As day by day cost incurred in renewable energy generation is decreasing, we need to find out significant parts where this kind of DC Microgrid can be utilized to provide electricity in all parts of the country. Keywords: DGUs, ImGs, DMA, OXD, DC Microgrid.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3406
Author(s):  
Sebastian Klaudiusz Tomczak ◽  
Anna Skowrońska-Szmer ◽  
Jan Jakub Szczygielski

In the interests of the environment, many countries set limits on the use of non-renewable energy sources and promote renewable energy sources through policy and legislation. Consequently, the demand for components for renewable energy systems exhibits an upward trend. For this reason, managers, investors, and banks are interested in knowing whether investing in a business associated with the semiconductor and related device manufacturing sector, especially the photovoltaic (PV) systems manufacturers, is worthy of a penny. Using a sample for the period of 2015-2018, we apply a new approach to panel data, extending existing research using Classification Trees with the k-Nearest Neighbor and Altman model. Our aim is to analyze the financial conditions of enterprises to identify key indicators that distinguish companies producing PV system components (labeled “green, G”) from companies that do not manufacture PV components (“red, R”). Our results show that green companies can be distinguished from red companies at classification accuracies of 86% and 90% for CRT and CHAID algorithms in Classification Trees method and 93% for k-Nearest Neighbor method, respectively. Based on the Altman model and the analysis of crucial ratios, we also find that green businesses are characterized by lower financial performance although future ratio values may equal or exceed the values for the red companies if current upward trends are sustained. Therefore, investing in green companies presents a viable alternative.


As the demand for electrical energy increases continuously, we cannot rely on the existing conventional source for continuous power supply, as they are diminishing fast. The renewable energy sources are the best alternative for this energy crisis. We have different types of renewable energy sources and choice of source depends on location and load requirement. The most prominent source is the solar energy because of its own advantages. The nature of supply from this source is DC and it is to be converted into AC for supply to consumers. However, inverters are used for this conversion but produces harmonics. The Multilevel inverters are the alternate choice over conventional inverters due to the advantages of Low dv/dt and lower switching losses. Out of various multilevel inverters, cascaded H bridge (CHB) MLI topology is a well known solution for reducing the harmonics, which needs more number of switches and isolation power supplies which further increases the cost. This paper describes a proposed hybrid H-bridge topology with reduced switches. The proposed topology is implemented in Matlab/Simulink and results for 5, 7, 9 and 11 level are analyzed with their THD in output voltage. Hardware model for 5-level inverter is developed using 8051 micro-controller and results are presented


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7902
Author(s):  
Małgorzata Blaszke ◽  
Maciej Nowak ◽  
Przemysław Śleszyński ◽  
Bartosz Mickiewicz

The paper aims to determine the role and formula of investments in renewable energy sources in Poland’s concepts of local spatial policies. It analyses 12,777 planning documents of local spatial policy (these are resolutions adopted by municipalities—in Poland there are two types of these instruments: studies of spatial development conditions and directions and local spatial development plans) in Poland enacted in 2005–2020. On this basis, local concepts were classified and related to the geographical and functional characteristics of municipalities. Poland is an interesting case study in this respect, providing a good reference point for broader international considerations. It was found that only 58.4% of Polish municipalities include renewable energy sources in their spatial policy concept. These are definitely more often urbanised municipalities. The degree of approach to renewable energy sources is also determined by the location of the municipality in the given province. The authors diagnose serious weaknesses in the Polish spatial planning system, consisting in the lack of skilful implementation of renewable energy sources into it. This is one of the reasons for the weaker development of renewable energy sources in the country. The authors consider as an innovative element of the research the analysis of the content of all spatial policy instruments in a given country, from the perspective of renewable energy sources, including proposing a way to verify these instruments.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012117
Author(s):  
Raghunath Niharika ◽  
K M Sai Pavan ◽  
P V Manitha

Abstract Climate change is a growing concern due to greenhouse gas emission and transportation has increased the requirement for various energy sources with limiting and less pollution. But with the establishment of more electric vehicles on the road, charging EV’s will be difficult if the grid is used. When many numbers of electric vehicles are integrated to the grid, it will inevitably have a huge effect on its function and control. Hence, there is a requirement for an effective charging system for electric vehicles using renewable energy sources. Solar energy is renewable and green, but the volatile nature of energy from the Photo-Voltaic (PV) system and dynamic charging requirement of electric vehicles has added new problems to the effective charging of EV from these sources. The Solar powered charging station with battery storage system is a better solution for this problem. The power is transferred from the AC grid to the DC link when there is a depletion of power from solar. This paper deals with DC level 1 fast charger to charge an electric vehicle with phase shifted full bridge converter as a main charging topology which is able to deliver the load of 50KW to charge the electric vehicle. To maintain a constant voltage at the output of the boost converter connected to the solar panel, a fuzzy controller is also developed in the proposed system


Sign in / Sign up

Export Citation Format

Share Document