Study on adhesion properties of low dielectric constant films by stud pull test and modified edge lift-off test

Author(s):  
Jung Gyu Song ◽  
Choon Kun Ryu ◽  
Heon-Do Kim ◽  
Si-Bum Kim ◽  
Chung Tae Kim ◽  
...  
2004 ◽  
Vol 812 ◽  
Author(s):  
Oscar van der Straten ◽  
Yu Zhu ◽  
Jonathan Rullan ◽  
Katarzyna Topol ◽  
Kathleen Dunn ◽  
...  

AbstractA previously developed metal-organic atomic layer deposition (ALD) tantalum nitride (TaNx) process was employed to investigate the growth of TaNx liners on low dielectric constant (low-k) materials for liner applications in advanced Cu/low-k interconnect metallization schemes. ALD of TaNx was performed at a substrate temperature of 250°C by alternately exposing low-k materials to tertbutylimido-tris(diethylamido)tantalum (TBTDET) and ammonia (NH3), separated by argon purge steps. The dependence of TaNx film thickness on the number of ALD cycles performed on both organosilicate and organic polymer-based low-k materials was determined and compared to baseline growth characteristics of ALD TaNx on SiO2. In order to assess the effect of the deposition of TaNx on surface roughness, atomic force microscopy (AFM) measurements were carried out prior to and after the deposition of TaNx on the low-k materials. The stability of the interface between TaNx and the low-k materials after thermal annealing at 350°C for 30 minutes was studied by examining interfacial roughness profiles using cross-sectional imaging in a high-resolution transmission electron microscope (HR-TEM). The wetting and adhesion properties of Cu/low-k were quantified using a solid-state wetting experimental methodology after integration of ALD TaNx liners with Cu and low-k dielectrics.


2005 ◽  
Vol 875 ◽  
Author(s):  
B.R. Kim ◽  
J. M. Son ◽  
J.W. Kang ◽  
K.Y. Lee ◽  
K.K. Kang ◽  
...  

AbstractDecreasing the circuit dimensions is driving the need for low-k materials with a lower dielectric constant to reduce RC delay, crosstalk, and power consumption. In case of spin-on organosilicate low-k films, the incorporation of a porogen is regarded as the only foreseeable route to decrease dielectric constant of 2.2 or below by changing a packing density. In this study, MTMS-BTMSE copolymers that had superior mechanical properties than MSSQ were blended with decomposable polymers as pore generators. While adding up to 40 wt % porogen into MTMS:BTMSE=100:50 matrix, optical, electrical, and mechanical properties were measured and the pore structure was also characterized by PALS. The result confirmed that there existed a tradeoff in attaining the low dielectric constant and desirable mechanical strength, and no more pores than necessary to achieve the dielectric objective should be incorporated. When the dielectric constant was fixed to approximately 2.3 by controlling BTMSE and porogen contents simultaneously, the thermo-mechanical properties of the porous films were also investigated for the comparison purpose. Under the same dielectric constant, the increase in BTMSE and porogen contents led to improvement in modulus measured by the nanoindentation technique but deterioration of adhesion strength obtained by the modified edge lift-off test.


2000 ◽  
Vol 612 ◽  
Author(s):  
Eugene S. Lopata ◽  
Lydia Young ◽  
John T. Felts

AbstractA plasma deposited SiOC very low k (VLK) interlayer dielectric (ILD) film has been developed which can be tuned to 2.5 = k = 3.0, demonstrates very good thermal stability, excellent adhesion properties, acceptable hardness, and an indication that it may be extendible to k < 2.5. This paper will disclose properties of this SiOC film which are important to a VLK ILD application.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


Sign in / Sign up

Export Citation Format

Share Document