scholarly journals Focused electron beam induced etching and in-situ monitoring: Fabrication of sub-beam sized nanoholes

Author(s):  
H. Miyazoe ◽  
I. Utke ◽  
J. Michler ◽  
K. Terashima
2007 ◽  
Vol 90 (5) ◽  
pp. 053106 ◽  
Author(s):  
Vinzenz Friedli ◽  
Christian Santschi ◽  
Johann Michler ◽  
Patrik Hoffmann ◽  
Ivo Utke

2020 ◽  
Vol 307 ◽  
pp. 111983 ◽  
Author(s):  
Jiaqi Guo ◽  
Anguo Huang ◽  
Renzhi Hu ◽  
Haiying Xu ◽  
Guang Yang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7015
Author(s):  
Marco Grasso

Increasing attention has been devoted in recent years to in situ sensing and monitoring of the electron beam melting process, ranging from seminal methods based on infrared imaging to novel methods based on backscattered electron detection. However, the range of available in situ monitoring capabilities and solutions is still quite limited compared to the wide number of studies and industrial toolkits in laser-based additive manufacturing processes. Some methods that are already industrially available in laser powder bed fusion systems, such as in situ detection of recoating errors, have not yet been investigated and tested in electron beam melting. Motivated by the attempt to fill this gap, we present a novel in situ monitoring methodology that can be easily implemented in industrial electron beam melting machines. The method is aimed at identifying local inhomogeneity and irregularities in the powder bed by means of layerwise image acquisition and processing, with no external illumination source apart from the light emitted by the hot material underneath the currently recoated layer. The results show that the proposed approach is suitable to detect powder bed anomalies, while also highlighting the link between the severity of in situ detected errors and the severity of resulting defects in the additively manufactured part.


2010 ◽  
Vol 241 ◽  
pp. 012072 ◽  
Author(s):  
I Utke ◽  
M Gabureac ◽  
V Friedli ◽  
L Bernau ◽  
J Michler

Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Sign in / Sign up

Export Citation Format

Share Document