Low-cost, simplified systems for photon-counting measurements in biological samples

Author(s):  
C.M. Gallep ◽  
A.M.O. Santos ◽  
E. Conforti
2021 ◽  
Author(s):  
Airidas Korolkovas ◽  
Alexander Katsevich ◽  
Michael Frenkel ◽  
William Thompson ◽  
Edward Morton

X-ray computed tomography (CT) can provide 3D images of density, and possibly the atomic number, for large objects like passenger luggage. This information, while generally very useful, is often insufficient to identify threats like explosives and narcotics, which can have a similar average composition as benign everyday materials such as plastics, glass, light metals, etc. A much more specific material signature can be measured with X-ray diffraction (XRD). Unfortunately, XRD signal is very faint compared to the transmitted one, and also challenging to reconstruct for objects larger than a small laboratory sample. In this article we analyze a novel low-cost scanner design which captures CT and XRD signals simultaneously, and uses the least possible collimation to maximize the flux. To simulate a realistic instrument, we derive a formula for the resolution of any diffraction pathway, taking into account the polychromatic spectrum, and the finite size of the source, detector, and each voxel. We then show how to reconstruct XRD patterns from a large phantom with multiple diffracting objects. Our approach includes a reasonable amount of photon counting noise (Poisson statistics), as well as measurement bias, in particular incoherent Compton scattering. The resolution of our reconstruction is sufficient to provide significantly more information than standard CT, thus increasing the accuracy of threat detection. Our theoretical model is implemented in GPU (Graphics Processing Unit) accelerated software which can be used to assess and further optimize scanner designs for specific applications in security, healthcare, and manufacturing quality control.


2016 ◽  
Vol 05 (01) ◽  
pp. 1640002
Author(s):  
Jake McCoy ◽  
Ted Schultz ◽  
James Tutt ◽  
Thomas Rogers ◽  
Drew Miles ◽  
...  

Photon counting detector systems on sounding rocket payloads often require interfacing asynchronous outputs with a synchronously clocked telemetry (TM) stream. Though this can be handled with an on-board computer, there are several low cost alternatives including custom hardware, microcontrollers and field-programmable gate arrays (FPGAs). This paper outlines how a TM interface (TMIF) for detectors on a sounding rocket with asynchronous parallel digital output can be implemented using low cost FPGAs and minimal custom hardware. Low power consumption and high speed FPGAs are available as commercial off-the-shelf (COTS) products and can be used to develop the main component of the TMIF. Then, only a small amount of additional hardware is required for signal buffering and level translating. This paper also discusses how this system can be tested with a simulated TM chain in the small laboratory setting using FPGAs and COTS specialized data acquisition products.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1644-1651 ◽  
Author(s):  
G. Birarda ◽  
A. Ravasio ◽  
M. Suryana ◽  
S. Maniam ◽  
H.-Y. N. Holman ◽  
...  

We report an innovative and simple way to fabricate plastic devices with infrared transparent view-ports enabling infrared spectromicroscopy of living biological samples. The main advantages of this new approach include lower production costs and a minimal access to a micro-fabrication facility.


2016 ◽  
Vol 857 ◽  
pp. 578-582 ◽  
Author(s):  
Q. Humayun ◽  
Uda Hashim ◽  
Che Mohd Ruzaidi

To perform the entire laboratory activities on a centimeter limit scale electronic chip, the most important aspect is to fabricate a device which persist sensitive and selective for the delivery of fluids flow and have the ability to execute a fast mixing of distinctive chemicals and bio samples. To resolve this issues the current paper is one of the good struggle, therefore the objective was arranged in according to the scope of research such as; to design and fabricate a polydimethylsiloxane (PDMS) material made, micro channel and its structure characterization for the investigation of internal subterranean area. By using an AutoCAD software the channel was first designed, however for the fabrication process the design was transferred to mask. Starting from SU-8 resist the pattern was transferred, and then by using the polydimethylsiloxane (PDMS) the mold was fabricated by adopting a low cost photolithography technique. Finally by employing Hawk 3 D surface nanoprofiler the structure was characterized. In our forthcoming research the device will be tested for real biological samples using a simple hand-operated inoculation technique.


2020 ◽  
Vol 16 ◽  
Author(s):  
Niranjan Thondavada ◽  
Rajasekhar Chokkareddy ◽  
Gan G Redhi ◽  
Venkatasubba Naidu Nuthalapati

: A simple, low cost and highly sensitive catalytic hydrogen wave (CHW) method has developed for the investigation of Manganese(II) in ammonium 4-phenylpiperazine-1-dithiocarbamate and ammonium 4-benzylpiperidine-1-dithiocarbamate in various environmental and biological samples using D.C. polarography. This procedure was based on the reaction of Mn(II) in APP-DTC/ABP-DTC in the presences of NH4Cl-NH4OH medium at pH 6.6 and 7.2 respectively. The resulting oxidation signals were obtained at -0.78 V and -0.64 V vs SCE, owing to the CHWs. Different experimental conditions such as pH effects, background electrolyte (NH4Cl-NH4OH) effects and DTCs and Mn(II) ion effects have been studied. The current method was effectively employed for the testing of Mn(II) in different environmental and biological samples and attained recovery percentages (95-99%) are comparable to the Atomic Absorption Spectrophotometry (AAS) method.


2013 ◽  
Vol 421 ◽  
pp. 334-336 ◽  
Author(s):  
Yong Qiang Cheng ◽  
Cui Lian Guo ◽  
Yang Li ◽  
Bin Zhao ◽  
Xiao Cui

Paper-based microfluidic devices have recently received increasing attention as a potential platform for its low cost, portability and excellent compatibility with biological samples. A variety of fabrication technologies were employed, including simple photolithography, wax plotting, printing, inkjet etching, plasma etching and so on. Meanwhile, the potential applications of paper-based microfluidic devices in diagnostic, point-of-care (POC), and environmental monitoring were reported. We review the recent progress of fabrication technologies and the applications of paper-based microfluidic devices.


2020 ◽  
Vol 7 (1) ◽  
pp. 191921
Author(s):  
Stephen D. Grant ◽  
Kyle Richford ◽  
Heidi L. Burdett ◽  
David McKee ◽  
Brian R. Patton

Phase microscopy allows stain-free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quantitative phase maps of unstained biological samples. Therefore, spatially resolved optical path length (OPL) information can also be determined. Using low-cost, open-source hardware, we applied the TIE to living algal cells to measure their effect on OPL. We obtained OPL values that were repeatable within species and differed by distinct amounts depending on the species being measured. We suggest TIE imaging as a method of discrimination between different algal species and, potentially, non-biological materials, based on refractive index/OPL. Potential applications in biogeochemical modelling and climate sciences are suggested.


Sign in / Sign up

Export Citation Format

Share Document