Research Progress of Paper-Based Microfluidic Devices

2013 ◽  
Vol 421 ◽  
pp. 334-336 ◽  
Author(s):  
Yong Qiang Cheng ◽  
Cui Lian Guo ◽  
Yang Li ◽  
Bin Zhao ◽  
Xiao Cui

Paper-based microfluidic devices have recently received increasing attention as a potential platform for its low cost, portability and excellent compatibility with biological samples. A variety of fabrication technologies were employed, including simple photolithography, wax plotting, printing, inkjet etching, plasma etching and so on. Meanwhile, the potential applications of paper-based microfluidic devices in diagnostic, point-of-care (POC), and environmental monitoring were reported. We review the recent progress of fabrication technologies and the applications of paper-based microfluidic devices.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245206
Author(s):  
Harry Felton ◽  
Robert Hughes ◽  
Andrea Diaz-Gaxiola

This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.


2020 ◽  
Vol 7 (1) ◽  
pp. 191921
Author(s):  
Stephen D. Grant ◽  
Kyle Richford ◽  
Heidi L. Burdett ◽  
David McKee ◽  
Brian R. Patton

Phase microscopy allows stain-free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quantitative phase maps of unstained biological samples. Therefore, spatially resolved optical path length (OPL) information can also be determined. Using low-cost, open-source hardware, we applied the TIE to living algal cells to measure their effect on OPL. We obtained OPL values that were repeatable within species and differed by distinct amounts depending on the species being measured. We suggest TIE imaging as a method of discrimination between different algal species and, potentially, non-biological materials, based on refractive index/OPL. Potential applications in biogeochemical modelling and climate sciences are suggested.


Author(s):  
Michael R. Moon ◽  
Lin Lin

Point of care medical instruments benefit from compact fluid handling systems in the microliter range. To handle fluid volumes this small, many novel technologies have been studied. Pneumatic valves offer advantages over other microfluidic valves, including robustness and low cost. These valves are used in centrifugal microfluidic devices, a very active area of research, and take advantage of pneumatic and centrifugal pressure to aliquot and control the flow of fluid. The physics of fluids at the micrometer scale are complex and modelling their behavior using CFD software is challenging. Representing adhesion, surface tension, and other multiphase interactions is critical to accurately model microfluidic behavior. Centrifugal devices must also consider Coriolis, centrifugal, and Euler effects. In this study, a pneumatic valve was designed and simulated using commercial CFD software. The device was also fabricated for verification of the simulation. The simulation demonstrated the multiphase interactions of fluid and air within the rotating device. In a transient analysis of the model, a 6 μl volume of water is held in stable equilibrium by a compressed volume of air at low RPM, while at a higher RPM, the fluid is observed to displace the compressed air as a result of Rayleigh-Taylor instability. Actual devices with comparable geometry were built and tested. The behavior of the valve predicted in the model was in agreement with experimental results produced from the actual devices. The results of the simulation captured the stabilizing effect of both pneumatic pressure and surface tension at low RPM, as well as the instability that results from increased centrifugal and Euler pressure at higher RPM.


2020 ◽  
Author(s):  
Mustafa Sen

Paper-based sensors have great potential to be used in a variety of fields ranging from environmental monitoring to clinical and point-of-care diagnostics. These sensors are disposable, cost effective, flexible and easy to use. The aim of this study was to fabricate a low cost, disposable, reliable and easy to use paper-based electrochemical sensor and its electrochemical modification with nanostructured Au for glucose detection in alkaline solutions.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 508
Author(s):  
Renzhu Pang ◽  
Qunyan Zhu ◽  
Jia Wei ◽  
Xianying Meng ◽  
Zhenxin Wang

Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.


2019 ◽  
Author(s):  
Stephen Grant ◽  
Kyle Richford ◽  
Heidi Burdett ◽  
David McKee ◽  
Brian R. Patton

AbstractPhase contrast microscopy allows stain free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quantitative phase maps of unstained biological samples. Therefore, spatially resolved refractive index information can also be determined.Using low-cost, open-source hardware, we applied the TIE to living algal cells to measure their refractive index. We obtained refractive index values that were repeatable within species and differed by distinct amounts depending on the species being measured. We suggest TIE imaging as a method of discrimination between different algal species and, potentially, non-biological materials, based on refractive index. Potential applications in biogeochemical modelling and climate sciences are suggested.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 773
Author(s):  
Brent Kalish ◽  
Mick Kyle Tan ◽  
Hideaki Tsutsui

Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices’ detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow control has been focused on introducing delays. However, delaying the flow can be problematic due to increased evaporation leading to sample loss. We report the use of a CO2 laser to uniformly etch the surface of the paper to modify wicking speeds in paper-based microfluidic devices. This technique can produce both wicking speed increases of up to 1.1× faster and decreases of up to 0.9× slower. Wicking speeds can be further enhanced by etching both sides of the paper, resulting in wicking 1.3× faster than unetched channels. Channels with lengthwise laser-etched grooves were also compared to uniformly etched channels, with the most heavily grooved channels wicking 1.9× faster than the fastest double-sided etched channels. Furthermore, sealing both sides of the channel in packing tape results in the most heavily etched channels, single-sided, double-sided, and grooved, wicking over 13× faster than unetched channels. By selectively etching individual channels, different combinations of sequential fluid delivery can be obtained without altering any channel geometry. Laser etching is a simple process that can be integrated into the patterning of the device and requires no additional materials or chemicals, enabling greater flow control for paper-based microfluidic devices.


BioScience ◽  
2021 ◽  
Author(s):  
Amanda T Stahl ◽  
Alexander K Fremier ◽  
Laura Heinse

Abstract Timely, policy-relevant monitoring data are essential for evaluating the effectiveness of environmental policies and conservation measures. Satellite and aerial imagery can fill data gaps at low cost but are often underused for ongoing environmental monitoring. Barriers include a lack of expertise or computational resources and the lag time between image acquisition and information delivery. Online image repositories and cloud computing platforms are increasingly used by researchers because they offer near-real-time, centralized access to local-to-global-scale data sets and analytics with minimal in-house computational requirements. We aim to broaden knowledge of these open access resources for biologists whose work routinely informs policy and management. To illustrate potential applications of cloud-based environmental monitoring (CBEM), we developed an adaptable approach to detect changes in natural vegetative cover in an agricultural watershed. The steps we describe can be applied to identify opportunities and caveats for applying CBEM in a wide variety of monitoring programs.


2021 ◽  
Vol 9 (2) ◽  
pp. 167-188
Author(s):  
Yanfei Ma ◽  
Bozhen Zhang ◽  
Imri Frenkel ◽  
Zhizhi Zhang ◽  
Xiaowei Pei ◽  
...  

Recent progress in the adhesion mechanism of mussels has led to great excitement in the field of adhesive materials. Although great progress has been made in the mussel adhesion mechanism and underwater adhesives, there are still many unknowns and challenges in this area. Thus, it is highly important to review the recent progress in mechanisms of mussel adhesion and mussel-inspired adhesives and predict trends for the future. In this review, we (1) summarize the research progress in fundamental interaction mechanisms in natural mussels; (2) discuss the application of the mussel interaction mechanism in the biomimetic mussel adhesive materials, from permanent/high-strength adhesives to temporary/smart adhesives; (3) briefly state the potential applications of the mussel-inspired adhesives in multiple fields, such as engineering applications, smart robotics and biomedicine; (4) summarize the future perspectives and unsolved challenges of mussel adhesion mechanisms and mussel-inspired adhesive materials. We envision that this review will provide an insightful perspective in understanding the mussel adhesion mechanism and directions to further explore, and promote the development of novel biomimetic mussel adhesive materials.


MRS Advances ◽  
2017 ◽  
Vol 2 (30) ◽  
pp. 1611-1619 ◽  
Author(s):  
Youning Gong ◽  
Chunxu Pan

ABSTRACTSince the discovery of graphene in 2004, graphene has already been one of the researching hotspots in the material science. As a promising method, electrochemical exfoliation has drawn great attention for producing graphene on industrial scale with high efficiency, low cost, and non-pollution. However, like other wet-chemical methods, the induced oxidation and chemical functionalization are unavoidable during the exfoliation process. Several solutions have been reported to overcome this issue and improve the graphene quality. In this review, we summarize the recent progress in preparation and potential applications of high-quality graphene via electrochemical exfoliation in acidic electrolytes, focusing on the technological innovation and related properties of obtained high-quality graphene.


Sign in / Sign up

Export Citation Format

Share Document