Fully Differential Switched Capacitor Amplifier d.c. Common Mode Rejection vs. Capacitors Mismatch

Author(s):  
Andrei Danchiv ◽  
Mircea Bodea ◽  
Claudius Dan
2020 ◽  
Vol 29 (14) ◽  
pp. 2050223
Author(s):  
Joydeep Basu ◽  
Pradip Mandal

For stabilizing the common-mode output voltage of fully differential operational amplifiers, switched-capacitor (SC) type of common-mode feedback (CMFB) is a familiar technique. This is appropriate for implementing high-gain wide-swing low-power op-amps due to its benefits of minimum power consumption, superior linearity across a large amplifier output swing range, and improved feedback loop stability in comparison to continuous-time CMFB. However, the usage of SC-CMFB requires careful attention to some realistic aspects, details of many of which are available in literature. Nonetheless, its adverse effect on the op-amp’s differential-mode gain has not been investigated much. The explanation for this effect is the SC-CMFB-induced equivalent resistive loading, and this is particularly significant in amplifiers like folded cascode which are intended to provide a high gain. This issue of drop in op-amp dc gain because of SC-CMFB, and the consequence on the realization of continuous-time and discrete-time forms of integrators utilizing such amplifiers is the topic of discussion in this paper. Relevant analytical derivations and circuit simulations at the transistor level are provided. A couple of design guidelines and circuit topologies for minimizing the loading-induced gain reduction are also presented.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750169 ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Gaetano Parisi ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

This paper presents a fully differential class-AB current mirror OTA that improves the common-mode behavior of a topology that presents very good differential-mode performance but poor common-mode rejection ratio (CMRR). The proposed solution requires a low-current auxiliary circuit driven by the input signal, to compensate the effect of the common-mode input component. Simulations in 40-nm CMOS technology show a net reduction of common-mode gain of more than 90[Formula: see text]dB without affecting the differential-mode behavior; a sample-and-hold amplifier exploiting the proposed amplifier has also been simulated.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550078 ◽  
Author(s):  
Seid Jafar Hosseinipouya ◽  
Farhad Dastadast

High performance of fully differential operational transconductance amplifier is designed and implemented using a 0.18-μm CMOS process. The implemented op-amp uses common mode feedback (CMFB) circuit operating in weak inversion region which does not affect other electrical characteristics due to eliminating common mode (CM) levels automatically leading to improve CM rejection ratio (CMRR) of the amplifier significantly. Moreover, the output stage has class-AB operation so that its current can be made larger due to increasing the output current dynamically using adaptive biasing circuit. Additionally, the AC currents of the active loads have been significantly reduced using negative impedances to increase the gain of the amplifier. The results show the GBW 2.3 MHz, slew rate 2.6 V/μs and 1% settling time 150 ns with a capacitive load of 15 pF. This amplifier dissipates only 6.2 μW from a 1.2 V power supply.


Sign in / Sign up

Export Citation Format

Share Document