Cleaning technique of hot-wall batch type Ru CVD equipment by oxygen gas

Author(s):  
D. Choi ◽  
D. Nozu ◽  
K. Hasebe ◽  
T. Shibata ◽  
K. Nakao ◽  
...  
Keyword(s):  
2006 ◽  
Vol 43 (11) ◽  
pp. 559-574
Author(s):  
M. N. Mungole ◽  
M. Surender ◽  
S. Bhargava
Keyword(s):  

2014 ◽  
Vol 29 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Mikko Tuominen ◽  
Hannu Teisala ◽  
Janne Haapanen ◽  
Mikko Aromaa ◽  
Jyrki M. Mäkelä ◽  
...  

Abstract Superhydrophobic nanoparticle coating was created on the surface of board using liquid flame spray (LFS). The LFS coating was carried out continuously in ambient conditions without any additional hydrophobization steps. The contact angle of water (CAW) of ZrO2, Al2O3 and TiO2 coating was adjusted reversibly from >150° down to ~10−20° using different stimulation methods. From industrial point of view, the controlled surface wetting has been in focus for a long time because it defines the liquid-solid contact area, and furthermore can enhance the mechanical and chemical bonding on the interface between the liquid and the solid. The used stimulation methods included batch-type methods: artificial daylight illumination and heat treatment and roll-to-roll methods: corona, argon plasma, IR (infra red)- and UV (ultra violet)-treatments. On the contrary to batch-type methods, the adjustment and switching of wetting was done only in seconds or fraction of seconds using roll-to-roll stimulation methods. This is significant in the converting processes of board since they are usually continuous, high volume operations. In addition, the creation of microfluidic patterns on the surface of TiO2 coated board using simple photomasking and surface stimulation was demonstrated. This provides new advantages and possibilities, especially in the field of intelligent printing. Limited durability and poor repellency against low surface tension liquids are presently the main limitations of LFS coatings.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Young H. Yoon ◽  
Jae R. Park ◽  
Sang W. Ahn ◽  
Kwang B. Ko ◽  
Kyung J. Min ◽  
...  

Hybrid Activated Sludge Process (HASP) with IMET was developed and applied to an activated sludge process for the advanced nutrient treatment in Korea. The characteristics of nitrogen removal from the HASP were investigated through a kinetic study by batch-type experiment. Online DB analysis produced from the IMET was conducted for the nutrient removal performance in the field demonstration plant treating 10,000 m3/day in G city of Korea. In this paper, we aimed to determine the effect of increasing NHM4+-N load on the specific nitrification rate (SNR) and the specific denitrification rate (SDNR) through a batch-type experiment, and to estimate the net reaction time for the phase-transfer rate using online DB analysis in the HASP operation. Experimental results include: (1) both the nitrification and denitrification followed first-order kinetics; (2) the maximum SNR and SDNR were 4.0301 mgN/gVSS·hr and 2.785 mgN/gVSS·hr, respectively; (3) comparison of reaction rates between nitrification and denitrification from the non-linear regression analysis found that nitrification rate was higher than denitrification.


Sign in / Sign up

Export Citation Format

Share Document