Low complexity decoder design of non-binary LDPC codes in amplify-and-forward relay networks with cooperative diversity

Author(s):  
Yier Yan ◽  
Ying Guo ◽  
Moon Ho Lee
Author(s):  
Long Bao Le ◽  
Sergiy A. Vorobyov ◽  
Khoa T. Phan ◽  
Tho Le-Ngoc

This chapter reviews fundamental protocol engineering aspects and presents resource allocation approaches for wireless relay networks. Important cooperative diversity protocols and their typical applications in different wireless network environments are first described. Then, performance analysis and QoS provisioning issues for wireless networks using cooperative diversity are discussed. Finally, resource allocation in wireless relay networks through power allocation for both single and multi-user scenarios are presented. For the multi-user case, we consider relay power allocation under different fairness criteria with or without user minimum rate requirements. When users have minimum rate requirements, we develop a joint power allocation and addmission control algorithm with low-complexity to circumvent the high complexity of the underlying problem. Numerical results are then presented, which illustrate interesting throughput and fairness tradeoff and demonstrate the efficiency of the proposed power control and addmission control algorithms.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 993 ◽  
Author(s):  
Guangyue Lu ◽  
Chan Lei ◽  
Yinghui Ye ◽  
Liqin Shi ◽  
Tianci Wang

In this paper, we focus on energy efficiency (EE) maximization for simultaneous wireless information and power transfer (SWIPT) based energy-constrained and amplify-and-forward (AF) relay networks. We adopt low-complexity time-switching (TS) protocol to realize SWIPT at the energy-constrained relay node, and formulate an EE maximization problem in which TS factor and transmit power control are needed to be jointly optimized. Since the formulated problem is non-convex and difficult to solve, we propose an algorithm combining fractional programming and alternating convex optimization to optimize TS factor and transmit power iteratively with low complexity. Simulation results are provided to demonstrate the convergence of the proposed algorithm, as well as the performance gains in terms of EE compared with other existing schemes.


Author(s):  
Chao Chen ◽  
Zheng Meng ◽  
Seung Jun Baek ◽  
Xiaohan Yu ◽  
Chuanhuang Li ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 700
Author(s):  
Yufei Zhu ◽  
Zuocheng Xing ◽  
Zerun Li ◽  
Yang Zhang ◽  
Yifan Hu

This paper presents a novel parallel quasi-cyclic low-density parity-check (QC-LDPC) encoding algorithm with low complexity, which is compatible with the 5th generation (5G) new radio (NR). Basing on the algorithm, we propose a high area-efficient parallel encoder with compatible architecture. The proposed encoder has the advantages of parallel encoding and pipelined operations. Furthermore, it is designed as a configurable encoding structure, which is fully compatible with different base graphs of 5G LDPC. Thus, the encoder architecture has flexible adaptability for various 5G LDPC codes. The proposed encoder was synthesized in a 65 nm CMOS technology. According to the encoder architecture, we implemented nine encoders for distributed lifting sizes of two base graphs. The eperimental results show that the encoder has high performance and significant area-efficiency, which is better than related prior art. This work includes a whole set of encoding algorithm and the compatible encoders, which are fully compatible with different base graphs of 5G LDPC codes. Therefore, it has more flexible adaptability for various 5G application scenarios.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 149641-149648
Author(s):  
Mengmeng Xu ◽  
Fei Liu ◽  
Hengzhou Xu ◽  
Hai Zhu ◽  
Baofeng Wang

Sign in / Sign up

Export Citation Format

Share Document