3D structure design and reliability analysis of wafer level package with bubble-like stress buffer layer

Author(s):  
Chang-Chun Lee ◽  
Hsin-Chih Liu ◽  
Ming-Chih Yew ◽  
Kuo-Ning Chiang
2000 ◽  
Author(s):  
Y. T. Lin ◽  
P. J. Tang ◽  
K. N. Chiang

Abstract The demands of electronic packages toward lower profile, lighter weight, and higher density of I/O lead to rapid expansion in the field of flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent needs of high I/O density and good reliability characteristic lead to the evolution of the ultra high-density type of non-solder interconnection such as the wire interconnect technology (WIT). The new technology using copper posts to replace the solder bumps as interconnections shown a great improvement in the reliability life. Moreover, this type of wafer level package could achieve higher I/O density, as well as ultra fine pitch. This research will focus on the reliability analysis of the WIT package structures in material selection and structural design, etc. This research will use finite element method to analyze the physical behavior of packaging structures under thermal cycling condition to compare the reliability characteristics of conventional wafer level package and WIT packages. Parametric studies of specific parameters will be performed, and the plastic and temperature dependent material properties will be applied to all of the models.


2008 ◽  
Vol 48 (4) ◽  
pp. 602-610 ◽  
Author(s):  
Xiaowu Zhang ◽  
Vaidyanathan Kripesh ◽  
T.C. Chai ◽  
Teck Chun Tan ◽  
D. Pinjala

Author(s):  
Chang-Chun Lee ◽  
Kuo-Ning Chiang

In order to enhance the wafer level package (WLP, Figure 1) reliability for larger chip size, many different kinds of WLP have been adopted, all have a compliant layer under the pads have to relieve the thermal stress of the solder joint. Usually, the solder joint reliability is enhanced with the increase of the thickness of the compliant layer. However, the fabrication processes of the WLP restrict the thickness of the compliant layer. With that in mind this research proposed a novel WLP package with bubble-like buffer layer (Figure 2) which is composed of a bubble-like plate and a buffer layer between the chip and the solder joint. The main goal of this research was to study the effects of the geometric dimensions and material properties of the bubble-like layer on the reliability of the WLP. For the parametric analysis purpose, a 2-D nonlinear finite element analysis for the proposed WLP was conducted. The results revealed that both the bubble-like plate and the buffer layer provide excellent compliant effects. However, the buffer layer has a more significant effect on enhancing the solder joint reliability. Also, for a WLP with buffer structure, the effect of the chip thickness on the reliability could be significantly reduced. In addition, the difference between the filled and non-filled buffer layers also affected the reliability of the solder joint. The results revealed that the WLP with the buffer layer and the no-fill bubble-like plate had the better reliability.


Author(s):  
Kuei Hsiao Kuo ◽  
Austin Chen ◽  
Yen Neng Wang ◽  
Jiunn Jie Wang ◽  
Jovi Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document