Stable high electron emission from LiNbO/sub 3/single crystal

Author(s):  
Ming Yin ◽  
Yanlai Ren ◽  
Dejie Li

2007 ◽  
Vol 1039 ◽  
Author(s):  
Natsuo Tatsumi ◽  
Akihiko Ueda ◽  
Keisuke Tanizaki ◽  
Yoshiki Nishibayashi ◽  
Takahiro Imai

AbstractThe n-type diamond is known to have high electron emission properties. However, device fabrication on n-type phosphorus doped diamond had 2 difficulties. First, because highly phosphorus doped n-type diamond layer can be grown only on very small (111) diamond substrate, fabrication of highly homogeneous 3 dimensional device such as gate electrode was very difficult. Second problem was that the resistivity of n-type diamond was still over 100 Ω cm and too high for high current electron emission devices. To solve these problems, we developed a new large size composite wafer in which (111) single crystal diamond was buried in polycrystal diamond and a new electrode coated emitter tip structure for conduction support only whose apex was exposed from the electrode. N-type phosphorus doped diamond was grown on the 15 mm composite diamond wafer with high PH3/CH4 concentration of 20% and highly doped active layer was grown on the embedded (111) single crystal. Sharp emitter tip arrays were fabricated by etching the n-type diamond. Electrodes were coated on these tips and exposed area of diamond was less than 200 nm from the apex of the tip. Gate electrodes were fabricated for each emitter tips. Electron emission of these devices were measured in the vacuum of 10−7 Pa. The threshold voltage of the n-type diamond device was 60 V which was lower than 100 V of the p-type diamond device. The threshold voltage of n-type diamond with and without electrode coatings did not changed. This means that electrode coating did not affect the emission properties and electrons were emitted from the diamond surface. The emission current was enhanced by 2 orders by the electrode coatings and total emission current from 1 mm2 reached 1103 mA. This high emission current electron source enables applications to microwave tubes, electron beam processing and integrated micro vacuum devices.



1976 ◽  
Vol 15 (10) ◽  
pp. 1899-1908 ◽  
Author(s):  
Akihiro Tomita ◽  
Nobuhiko Hirai ◽  
Kenjiro Tsutsumi


Author(s):  
Vladimir Yu. Sadovoy ◽  
Vladimir D. Blank ◽  
Sergey A. Terentiev ◽  
Dmitriy V. Teteruk ◽  
Sergey Yu. Troschiev

Dependence of secondary electron emission coefficient on the chosen crystallographic orientation for a synthetic single crystal diamond of type IIb, grown up by method of a temperature gradient, was investigated. The type IIb of single crystal diamond was chosen because of wide applicability in different areas of microelectronics and the semiconductor properties. Quantitative measurements of secondary electron emission coefficients with energy of primary beam about 7 keV and above for various crystallographic orientations was carried out: the highest coefficient of secondary electronic emission are recorded for the direction (100), cubic sector, and also in intergrowth area that is confirmed by a picture of distribution of the luminescence intensity for various sectors of a single crystal received by means of true secondary electrons detector of scanning electron microscope. The results for (100) area are outstanding: 8.18 at primary beam energy of 7 keV, 10.13 at 10 keV, 49.78 at 30 keV. The results for intergrowth area are similar: 10.10 at primary beam energy of 7 keV, 13.56 at 10 keV, 64.41 at 30 keV. The crystallographic directions (111) have shown secondary electron emission coefficient 4-6 times lower in comparison with (100) and intergrowth area: 2.54 on the average at primary beam energy of 7 keV, 2.75 at 10 keV, 10.03 at 30 keV. The non-standard behavior of secondary electron emission coefficient at the high energy primary beam for all orientations of single crystal diamond is shown: increase in secondary electron emission coefficient with increase in energy of primary beam. At the moment the reason of such behavior is not clear up to the end and since this fact causes a great interest of researchers, considerably expands applicability of the existing devices and detectors due to replacement of a functional element on diamond one, and also opens big opportunities for formation of new field of microelectronics, this facts demand further in-depth study by means of various methods of the structural and surface analysis.



2018 ◽  
Vol 47 (5) ◽  
pp. 525002
Author(s):  
李玉魁 LI Yu-kui ◽  
刘云朋 LIU Yun-peng ◽  
武超 WU Chao ◽  
杨娟 YANG Juan


2020 ◽  
Vol 49 (9) ◽  
pp. 5622-5630 ◽  
Author(s):  
Yixin Xiao ◽  
Xin Zhang ◽  
Rongrong Li ◽  
Hongliang Liu ◽  
Yanlin Hu ◽  
...  


2019 ◽  
Vol 117 (2) ◽  
pp. 902-906 ◽  
Author(s):  
Mark Hettick ◽  
Hao Li ◽  
Der-Hsien Lien ◽  
Matthew Yeh ◽  
Tzu-Yi Yang ◽  
...  

III–V compound semiconductors are widely used for electronic and optoelectronic applications. However, interfacing III–Vs with other materials has been fundamentally limited by the high growth temperatures and lattice-match requirements of traditional deposition processes. Recently, we developed the templated liquid-phase (TLP) crystal growth method for enabling direct growth of shape-controlled single-crystal III-Vs on amorphous substrates. Although in theory, the lowest temperature for TLP growth is that of the melting point of the group III metal (e.g., 156.6 °C for indium), previous experiments required a minimum growth temperature of 500 °C, thus being incompatible with many application-specific substrates. Here, we demonstrate low-temperature TLP (LT-TLP) growth of single-crystalline InP patterns at substrate temperatures down to 220 °C by first activating the precursor, thus enabling the direct growth of InP even on low thermal budget substrates such as plastics and indium-tin-oxide (ITO)–coated glass. Importantly, the material exhibits high electron mobilities and good optoelectronic properties as demonstrated by the fabrication of high-performance transistors and light-emitting devices. Furthermore, this work may enable integration of III–Vs with silicon complementary metal-oxide-semiconductor (CMOS) processing for monolithic 3D integrated circuits and/or back-end electronics.



1995 ◽  
Vol 416 ◽  
Author(s):  
A. Shih ◽  
J. Yater ◽  
P. Pehrsson ◽  
J. Butler ◽  
C. Hor ◽  
...  

ABSTRACTDiamond exhibits high secondary-electron yields which vary strongly with sample preparation and sample treatment. In this study, we identify some of the factors that govern the secondary-electron emission yield of diamond. Comparative studies are made with polycrystalline diamond films having different dopants (boron or nitrogen), dopant concentrations and surface conditions (hydrogen-terminated or oxidized). In these studies, the total electron yield as a function of the incident-electron energy and the energy distribution of the secondary emitted electrons are measured. The results show that both electrical conductivity and hydrogen-termination play essential roles in the secondary-electron emission process. For hydrogen-terminated samples, the energy distribution shows a large and narrow peak at the onset of electron emission. The long mean-free path of the secondary electrons and the low or negative electron affinity are essential to the exceedingly high electron yield of diamond.



Sign in / Sign up

Export Citation Format

Share Document