Hierarchical path planning and flight control of small autonomous helicopters using MPC techniques

Author(s):  
Cunjia Liu ◽  
Wen-Hua Chen
2022 ◽  
pp. 1-20
Author(s):  
Amin Basiri ◽  
Valerio Mariani ◽  
Giuseppe Silano ◽  
Muhammad Aatif ◽  
Luigi Iannelli ◽  
...  

Abstract Multi-rotor Unmanned Aerial Vehicles (UAVs), although originally designed and developed for defence and military purposes, in the last ten years have gained momentum, especially for civilian applications, such as search and rescue, surveying and mapping, and agricultural crops and monitoring. Thanks to their hovering and Vertical Take-Off and Landing (VTOL) capabilities and the capacity to carry out tasks with complete autonomy, they are now a standard platform for both research and industrial uses. However, while the flight control architecture is well established in the literature, there are still many challenges in designing autonomous guidance and navigation systems to make the UAV able to work in constrained and cluttered environments or also indoors. Therefore, the main motivation of this work is to provide a comprehensive and exhaustive literature review on the numerous methods and approaches to address path-planning problems for multi-rotor UAVs. In particular, the inclusion of a review of the related research in the context of Precision Agriculture (PA) provides a unified and accessible presentation for researchers who are initiating their endeavours in this subject.


2010 ◽  
pp. 195-215
Author(s):  
Kenzo Nonami ◽  
Farid Kendoul ◽  
Satoshi Suzuki ◽  
Wei Wang ◽  
Daisuke Nakazawa

2021 ◽  
Vol 13 (5) ◽  
pp. 989
Author(s):  
Feihu Yan ◽  
Enyong Xia ◽  
Zhaoxin Li ◽  
Zhong Zhou

Unmanned aerial vehicles (UAVs) can capture high-quality aerial photos and have been widely used for large-scale urban 3D reconstruction. However, even with the help of commercial flight control software, it is still a challenging task for non-professional users to capture full-coverage aerial photos in complex urban environments, which normally leads to incomplete 3D reconstruction. In this paper, we propose a novel path planning method for the high-quality aerial 3D reconstruction of urban scenes. The proposed approach first captures aerial photos, following an initial path to generate a coarse 3D model as prior knowledge. Then, 3D viewpoints with constrained location and orientation are generated and evaluated, according to the completeness and accuracy of the corresponding visible regions of the prior model. Finally, an optimized path is produced by smoothly connecting the optimal viewpoints. We perform an extensive evaluation of our method on real and simulated data sets, in comparison with a state-of-the-art method. The experimental results indicate that the optimized trajectory generated by our method can lead to a significant boost in the performance of aerial 3D urban reconstruction.


2017 ◽  
Vol 7 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Robert J. de Boer ◽  
Karel Hurts

Abstract. Automation surprise (AS) has often been associated with aviation safety incidents. Although numerous laboratory studies have been conducted, few data are available from routine flight operations. A survey among a representative sample of 200 Dutch airline pilots was used to determine the prevalence of AS and the severity of its consequences, and to test some of the factors leading to AS. Results show that AS is a relatively widespread phenomenon that occurs three times per year per pilot on average but rarely has serious consequences. In less than 10% of the AS cases that were reviewed, an undesired aircraft state was induced. Reportable occurrences are estimated to occur only once every 1–3 years per pilot. Factors leading to a higher prevalence of AS include less flying experience, increasing complexity of the flight control mode, and flight duty periods of over 8 hr. It is concluded that AS is a manifestation of system and interface complexity rather than cognitive errors.


Sign in / Sign up

Export Citation Format

Share Document