Federated Learning and Autonomous UAVs for Hazardous Zone Detection and AQI Prediction in IoT Environment

Author(s):  
Prateek Chhikara ◽  
Rajkumar Tekchandani ◽  
Neeraj Kumar ◽  
Mohsen Guizani ◽  
Mohammad Mehedi Hassan
Keyword(s):  
Author(s):  
A.A. Korotkiy ◽  
◽  
E.V. Egelskaya ◽  
V.V. Egelskiy ◽  
A.A. Maslennikov ◽  
...  

The rapid implementation of information technologies into all strata of the civil society activities has already significantly modified lives of every citizen, including production processes. The usual practice is using electronic safety devices in the technical units, including hoisting cranes. The consumer market offers remote control systems for equipment; continuous video surveillance over workflows is widely employed. Unmanned productions and unmanned technologies are being implemented, which is especially relevant at operation of potentially harmful and hazardous units. However, for a human actively participating in workflows, control and maintenance of technical devices, his/her safety during fulfillment of working functions is still a matter of great importance. In Russia, the requirements to production employees safety are determined by legislative and regulatory documents in the sphere of labor protection. Special rules of industrial safety are applied to hazardous production facilities. An important aspect of slinger protection against hazardous and harmful factors of production during operation of a hoisting crane as well as observing production discipline is using personal protection equipment and special working clothes. The constant monitoring of safety requirements in order to ensure their implementation in the real-time mode via the RFID-tags integrated into the elements of personal protection equipment and special working clothes is substantiated. The information on slinger location and availability of the required protection equipment within the hazardous zone of hoisting crane operation received to a mobile device of a person responsible for safe operation enables control of the situation, prevention of adverse events and minimization of risk of injury.


2021 ◽  
Vol 23 ◽  
pp. 65-77
Author(s):  
Zdzislaw Salamonowicz ◽  
Malgorzata Majder-Lopatka ◽  
Anna Dmochowska ◽  
Aleksandra Piechota-Polanczyk ◽  
Andrzej Polanczyk

LPG storage tanks may be seriously threatened by a fire coming from nearby fuels or by leakage appearance. The aim of the study was to prepare a three-dimensional model of LPG release on a car gas station under different environmental conditions. CFD simulations of liquid and gas phase release from a tank localized on a car gas station was performed. First, ALOHA software was applied to determine mass flow rate, while Ansys software was used to determine the shape and size of hazardous zone. To reflect real condition atmospheric stability classes were applied. It was observed that for classes A-D the hazardous zone was decreasing. While, for E and F class the range was increased. It was noticed that the location of the leakage affects the extent of the danger zone. For the leaking below the liquid surface analyzed LPG has liquid form. While, for the leaking above the liquid surface analyzed LPG has gas form. Furthermore, for liquid leakage the largest hazard zone of release was observed.


1982 ◽  
Vol 72 (3) ◽  
pp. 1011-1024
Author(s):  
Sunil Sharma ◽  
William D. Kovacs

abstract The city of Memphis, which is situated very close to the inferred epicenter of one of the three major 1811 to 1812 earthquakes, is in a potentially hazardous zone which will be susceptible to the usual seismic hazards. By recognizing the high level of seismicity in the New Madrid area, this study attempts to microzone the potential hazards by considering the following subjects: (i) the seismicity of the central United States; (ii) design earthquakes; and (iii) response analysis which allows construction of the necessary microzonation maps. The seismicity of the region is evaluated from state-of-the-art literature as there is no recorded strong-motion data available for the central United States. Synthetically generated accelerograms, simulating the design earthquakes, were used to represent the ground motions which were applied at a depth of 45 m, below ground surface, at numerous sites in Memphis. The soil stratigraphy was conceptualized from borehole data, made available by local sources, and dynamic soil properties estimated from available empirical correlations. The results of the response analysis were transformed into microzonation maps depicting: (i) zones showing qualitative estimates of ground response; (ii) zones showing the natural frequency of the soils; (iii) zones showing the peak spectral acceleration for 2 per cent damping ratio; and (iv) zones of liquefaction potential. These maps are useful for preliminary design and are not intended to be used on a quantitative basis. Further investigation is necessary in determining the stratigraphy and soil properties for a site-specific design and analysis.


2021 ◽  
Author(s):  
Si Tran ◽  
Truong Linh Nguyen ◽  
Chansik Park

2021 ◽  
Author(s):  
Risal Rahman ◽  
Reyhan Hidayat ◽  
Pratika Siamsyah Kurniawati ◽  
Rantoe Marindha ◽  
Gerardus Putra Pancawisna ◽  
...  

Abstract Nowadays oil and gas industry are encouraging the independents and majors to take a fresh look at the technology and concepts required to develop marginal shallow water fields using a minimal platform approach. Innovation on well intervention means (lighter, smaller and less footprint) that fit for Offshore Minimalist Platform (OMP) is needed, including optimizing time and cost during well intervention activities in OMP. To achieve the objectives, well intervention innovation and technology are the main focuses. Intervention activities commonly done on campaign basis with several units (slickline, wireline, coiled tubing, testing) shall be integrated in a safe manner. The approach of integration shall signify these points:Identifying potential jobs in OMP to be done by well intervention methodsIdentifying necessary well intervention means and methods to support the jobs (combo unit, micro coil, hazardous zone redefinition, remote operation)Creating project planning and schedulingPerforming site visit and risk assessmentImplementation and operational executionEvaluation of overall project execution result The following results were obtained after the integration performed:No major safety issues during operationExemplary method and risk assessment for well intervention activities which can be applied for next campaignsTrials on well intervention new units and method (combo unit, micro coil, hazardous zone redefinition, remote operation), were safely performed with some optimization100% success ratio60% on supply boat arrangement35% efficiency in N2 consumption for CT operation45% efficiency in diesel consumption20% - 40% efficiency in Rig Up Time28% less in Job Cost compared to conventional unit These innovations are proven as reliable method to answer OMP challenges with main advantages on footprint and cost optimization. Through this paper, we would like to share lucrative well intervention breakthrough and innovation in OMP with measurable milestones.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


2013 ◽  
Vol 353-356 ◽  
pp. 2277-2280
Author(s):  
Lin Zhi Fu ◽  
Yu Feng Li ◽  
Gang Li

According to the international standard, main problems lying in the process of hazardous zone classification were emphatically analyzed. The source of release was determined in light of its release frequency and duration, namely the continuous source, primary source and secondary source. Considering the effect of release rate, LEL, density, ventilation, obstacles, and meteorological conditions on the classification of the hazardous area, it could be found that the hazardous zone would expand as the release rate increased with lower explosion limit. The gas that was heavier than air covered larger hazardous areas than the lighter gas. Besides, ventilation might speed up the diffusion so as to reduce the scope the hazardous zone; obstacles prevented the diffusion so that concentration of partial gas increased and then the danger level increased; wind at high speed quickened the diffusion to decrease the range of dangerous area. Finally, explosion-proof electrical equipment was selected rationally according to the type of explosive gas and temperature group.


2021 ◽  
Author(s):  
Susanna Falsaperla ◽  
Alessandro Tibaldi ◽  
Noemi Corti ◽  
Emanuela De Beni ◽  
Fabio L. Bonali ◽  
...  

<p>Strategies for disaster risk reduction in volcanic areas are mostly driven by multidisciplinary analyses, which offer effective and complementary information on complex geomorphological and volcano-tectonic environments. For example, quantification of the offset at active faults and fissures is of paramount importance to shed light on the kinematics of zones prone to deformation and/or seismic activity. This provides key information for the assessment of seismic hazard, but also for the identification of conditions that may favor magma uprising and opening of eruptive fissures.</p><p>Here we present the results of a study encompassing detailed geological, structural and seismological observations focusing on part of the NE Rift at Etna volcano (Italy). The area is situated at an elevation ranging between 2700 and 1900 m a.s.l. where harsh meteorological conditions and difficult logistics render classical field work a troublesome issue. In order to bypass these difficulties, high-resolution (2.8 cm) UAV survey has been recently completed. The survey highlights the presence of 250 extension fractures, 20 normal fault segments, and 54 eruptive fissures. The study allows us to quantify the kinematics at extensional fractures and normal faults, obtaining an extension rate of 1.9 cm/yr for the last 406 yr. With a total of 432 structural data collected by UAV along with SfM photogrammetry, this work also demonstrates the suitability of the application of such surveys for the monitoring of hazardous zone.</p>


2016 ◽  
Author(s):  
Hiroto Nagai ◽  
Manabu Watanabe ◽  
Naoya Tomii ◽  
Takeo Tadono ◽  
Shinichi Suzuki

Abstract. We demonstrated an assessment of the sediments caused by a catastrophic avalanche, induced by the main shock of the 2015 Gorkha Earthquake in Nepal. Calculation of decreasing coherence and visual interpretation of amplitude images by means of the Phased Array-type L-band Synthetic Aperture Radar-2 (PALSAR-2) have a high potential for delineating the hazardous zone. These delineated outlines area highly consistent with that from a high-resolution optical image of WorldView-3 (WV-3). The delineated sediment collapse areas were estimated as 0.63 km2 (PALSAR-2 coherence calculation), 0.73 km2 (PALSAR-2 visual interpretation), and 1.09 km2 (WV-3), respectively. In the WV-3 image, surface features were classified into 15 segments, with the flowing, scattering, and other characteristics implying different physical properties; the different features suggest sequential collapse from multiple sources. By means of satellite-derived pre- and post-event digital surface models, differences in the surface altitudes of the collapse events estimated the total volume of the sediments as 6229.1 x 103 m3, with an error possibility between 5363.3 x 103 to 7314.8 x 103 m3, most of which are distributed along the river bed and the water stream. Further altitude measurements after ice/snow melting would reveal a contained volume of melting ice and snow, which will contribute to numerical avalanche simulation and source considerations.


Sign in / Sign up

Export Citation Format

Share Document