The dielectric strength of the vacuum: Electrostatic ionization gradient of metal electrodes

1922 ◽  
Vol 41 (11) ◽  
pp. 852-853 ◽  
Author(s):  
J. L. R. Hayden
2003 ◽  
Vol 766 ◽  
Author(s):  
Ahila Krishnamoorthy ◽  
N.Y. Huang ◽  
Shu-Yunn Chong

AbstractBlack DiamondTM. (BD) is one of the primary candidates for use in copper-low k integration. Although BD is SiO2 based, it is vastly different from oxide in terms of dielectric strength and reliability. One of the main reliability concerns is the drift of copper ions under electric field to the surrounding dielectric layer and this is evaluated by voltage ramp (V-ramp) and time dependent dielectric breakdown (TDDB). Metal 1 and Metal 2 intralevel comb structures with different metal widths and spaces were chosen for dielectric breakdown studies. Breakdown field of individual test structures were obtained from V-ramp tests in the temperature range of 30 to 150°C. TDDB was performed in the field range 0.5 – 2 MV/cm. From the leakage between combs at the same level (either metal 1 or metal 2) Cu drift through SiC/BD or SiN/BD interface was characterized. It was found that Cu/barrier and barrier/low k interfaces functioned as easy paths for copper drift thereby shorting the lines. Cu/SiC was found to provide a better interface than Cu/SiN.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2012 ◽  
Vol 15 (2-3) ◽  
pp. 157-168 ◽  
Author(s):  
Mireille Bechara ◽  
Rabih Khazaka ◽  
Sombel Diaham ◽  
Marie-Laure Locatelli ◽  
Pierre Bidan

2012 ◽  
Vol 1402 ◽  
Author(s):  
Kanan Puntambekar ◽  
Lisa Stecker ◽  
Kurt Ulmer ◽  
Themistokles Afentakis ◽  
Steven Droes

ABSTRACTOptimization of the interface between the organic semiconductor (OSC) & the source-drain (S/D) electrode is critical in order to improve organic thin film transistor (OTFT) device performance. This process typically involves coating the metal S/D electrodes with an optimal self-assembled thiol layer; a process that requires pristine metal surfaces for successful treatment. Obtaining contamination free surfaces can be challenging in the case of printed metal electrodes. Here we demonstrate an effective strategy to address this issue by introducing a brief low power forming gas plasma treatment prior to the surface coating step. We show a two orders of magnitude decrease in the contact resistance as a result of this treatment.


1986 ◽  
Vol 133 (8) ◽  
pp. 1549-1554 ◽  
Author(s):  
J. C. Dobson ◽  
F. R. McLarnon ◽  
E. J. Cairns
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document