A late-model optical biochemical sensor based on OTS for methane gas and glucose solution concentration detection

2021 ◽  
pp. 1-1
Author(s):  
Bao-Fei Wan ◽  
Qian-Yu Wang ◽  
Hong-Mei Peng ◽  
Hai-Ning Ye ◽  
Hai-Feng Zhang
2013 ◽  
Vol 284-287 ◽  
pp. 2885-2889
Author(s):  
Yun Dong Zhang ◽  
Jing Zhang ◽  
He Tian ◽  
Ping Yuan

We present the microsphere coupled Mach–Zehnder interference structure. We theoretically calculate that spectral responses of this structure vary with the glucose solution concentrations. It can produce the sharply asymmetric Fano resonance line shape related to the slope between zero and unity transmission. The variation of the normalized transmission is linearly related to the solution concentration. This structure is the promising highly sensitive biochemical sensor due to high quality factor resonance and steep slope over a very narrow frequency range


2011 ◽  
Vol 301-303 ◽  
pp. 1139-1144
Author(s):  
Li Ying Jiang ◽  
Li Jie Ren ◽  
Qing Hua Chen ◽  
Guang Zhao Cui

According to the relationship of glucose content in diabetes saliva and blood, the biosensor for detecting saliva glucose was introduced based on electrochemical detecting principle, glucose oxidase was immobilized onto the surface of electrode by glutaraldehyde cross-linking. The measuring system was designed by using potentiostat for amperometric chemical sensors. The characters of the microsystem has been demonstrated with the detection of standard glucose solution concentration of saliva parameter. Compared with the data obtained from the instrument CHI660A, it showed that has a good linear relation in the linear range of 0-2200µmol/L, with the correlation coefficient of 0.9531.


2010 ◽  
Vol 30 (1) ◽  
pp. 276-281 ◽  
Author(s):  
Alda Jusceline Leonel ◽  
Hulda Noemi Mamani Chambi ◽  
Daniel Barrera-Arellano ◽  
Heloise Oliveira Pastore ◽  
Carlos Raimundo Ferreira Grosso

The objective of this research was to produce and characterize lipid particles (MpLs) that may be used as carriers of high amounts of hydrophilic core and evaluate the influence of the core amount on the performance of lipid microparticles. The MpLs were produced by spray cooling from solid and liquid lipid mixtures (stearic and oleic fatty acids and partly hydrogenated vegetable fat) containing glucose solution as core and soy lecithin as surfactant. The performance of MpLs was evaluated by means of the effective amount of encapsulated core, the core amount present on the surface of MpLs (superficial glucose) and the core release profile in aqueous solution. Morphological observations showed that MpLs presented spherical shape and a rugged and continuous surface, and an average diameter between 25 and 32 µm. The effective amount of encapsulated core was greater than 78% for all formulations evaluated. Larger amounts of superficial glucose were found in formulations in which more concentrated glucose solutions were used, regardless of the glucose lipid-solution ratio. The release results showed that core retention was significantly influenced by the glucose solution concentration, whereas release modulation was influenced by the glucose lipid-solution ratio.


AIP Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 035313 ◽  
Author(s):  
Siwei Zhao ◽  
Wei Tao ◽  
Qiaozhi He ◽  
Hui Zhao ◽  
Wenwu Cao

2017 ◽  
Vol 46 (4) ◽  
pp. 406003
Author(s):  
马健 MA Jian ◽  
郑羽 ZHENG Yu ◽  
余海湖 YU Hai-hu

2022 ◽  
Vol 2152 (1) ◽  
pp. 012023
Author(s):  
Shuwei Lv ◽  
Xinming Zhang ◽  
Xiaodong Yang ◽  
Ying Zhai

Abstract A chemical etching technique is used to prepare a superhydrophobic surface with a honeycomb rough structure on the aluminum surface. Use SEM, Optical contact angle meter and Surface tension detector to characterize the etched aluminum substrate. After the 8th etching, the surface of the sample showed the morphology of micro/nano-scale honeycomb pores and protrusions, and the water contact angle (WCA) is 135°. After being modified with octadecanethiol methanol solution, WCA is 153.1°. After modification, the contact angle of the sample surface decreases with the increase of the glucose solution concentration. When the glucose solution concentration reaches 1000 mg/L, the superhydrophobicity is lost.


Sign in / Sign up

Export Citation Format

Share Document