scholarly journals Production and characterization of lipid microparticles produced by spray cooling encapsulating a low molar mass hydrophilic compound

2010 ◽  
Vol 30 (1) ◽  
pp. 276-281 ◽  
Author(s):  
Alda Jusceline Leonel ◽  
Hulda Noemi Mamani Chambi ◽  
Daniel Barrera-Arellano ◽  
Heloise Oliveira Pastore ◽  
Carlos Raimundo Ferreira Grosso

The objective of this research was to produce and characterize lipid particles (MpLs) that may be used as carriers of high amounts of hydrophilic core and evaluate the influence of the core amount on the performance of lipid microparticles. The MpLs were produced by spray cooling from solid and liquid lipid mixtures (stearic and oleic fatty acids and partly hydrogenated vegetable fat) containing glucose solution as core and soy lecithin as surfactant. The performance of MpLs was evaluated by means of the effective amount of encapsulated core, the core amount present on the surface of MpLs (superficial glucose) and the core release profile in aqueous solution. Morphological observations showed that MpLs presented spherical shape and a rugged and continuous surface, and an average diameter between 25 and 32 µm. The effective amount of encapsulated core was greater than 78% for all formulations evaluated. Larger amounts of superficial glucose were found in formulations in which more concentrated glucose solutions were used, regardless of the glucose lipid-solution ratio. The release results showed that core retention was significantly influenced by the glucose solution concentration, whereas release modulation was influenced by the glucose lipid-solution ratio.

2016 ◽  
Vol 849 ◽  
pp. 788-793 ◽  
Author(s):  
Liang Liang Lu ◽  
Shao Ming Zhang ◽  
Jun Xu ◽  
Yan Wei Sheng ◽  
Shan Shan Wang ◽  
...  

The solidification characterization of K418 alloy powders prepared by argon atomization was studied, and thermal parameters of the alloy powder during solidification process were calculated. The results show that powder morphology is spherical shape, the average diameter of the powder is 55μm, the amount of less 100μm powder is about 90 percent, the solidification microstructure of powders particle surface are dentrite and cellular structure. Decreasing the particle size, the microstructures of particle interior change from dentrite in major to cellular structures, and the structure is more uniformed. The length of secondary dentritic arm and the cooling rate as a function of K418 alloy powders size is established, the cooling rate increases with a decrease of the powder particle size, the cooling rate is in the range of 104K.S-1-106K.S-1.


2012 ◽  
Vol 1371 ◽  
Author(s):  
Dulce N. Castillo ◽  
Tomás D. Becerril ◽  
Enrique R. Andrés ◽  
Héctor J. Santiesteban ◽  
Godofredo G. Salgado

ABSTRACTWe have synthesized core-shell 1D nanostructures by the Vapor-Liquid-Solid (VLS) mechanism. Gold (Au) was used as a catalyst and tin oxide (SnO) powder as a precursor; the growth temperature was of 600 °C. These structures were characterized by XRD, SEM, TEM, EDS, and PL. The nanowires have an average diameter of 20 nm and their lengths are of tens of micrometers; the core is tin dioxide (SnO2) with the tetragonal rutile structure and it has an average diameter of 12 nm; the shell is amorphous Sn of 8 nm average thickness. Photoluminescence measurements show a broad band in the 400-800 nm range. On the same growth process, SnO2 nanoparticles and a mixture of SnO2 rods and wires were also obtained, at 400 °C and 800 °C, respectively.


2021 ◽  
Vol 11 (11) ◽  
pp. 5090
Author(s):  
Muhammed Enes Tasci ◽  
Berna Dede ◽  
Eray Tabak ◽  
Aybuke Gur ◽  
Rabia Betul Sulutas ◽  
...  

Polymeric microparticles with controlled morphologies and sizes are being studied by researchers in many applications, such as for drug release, healthcare and cosmetics. Herein, spherical and porous polymeric microparticles of different sizes and morphologies by electrospray technique have been developed as a viable alternative. In this work, polylactic acid (PLA) microparticles with a spherical shape and porous morphology were successfully produced via an electrospray technique in a single step. Molecular interactions between the components and the effect of parameters, such as varying solvent compositions, flow rates and voltage on microparticle morphology, were investigated over the particle formation. It was observed that the type of solvents used is the most effective parameter in terms of particle morphology, size and distribution. When the optical microscopy and SEM images of the microparticles were examined, 3 wt.% PLA in dichloromethane (DCM) solution concentration with an applied voltage of 18 kV and a flow rate of 20 µL/min was found to be the optimum parameter combination to achieve the desired spherical and porous micron-size particles. The average diameter of the particles achieved was 3.01 ± 0.58 µm. DCM was found to be a more suitable solvent for obtaining microparticles compared to the other solvents used. Finally, particles that are obtained by electrospraying of PLA–DCM solution are porous and monodisperse. They might have excellent potential as a carrier of drugs to the targeted sides and can be used in different biomedical applications.


Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 443-448 ◽  
Author(s):  
Iván Valdebenito Isler ◽  
Elías Figueroa Villalobos ◽  
Leydy Sandoval ◽  
Pablo Contreras Mellado ◽  
Juan Carlos Sánchez Caamaño ◽  
...  

SummaryThere is no information about the characteristics of early cleavage in the Patagonian blennie (Eleginops maclovinus), which can be used as a diagnostic tool for embryo quality. The purpose of this investigation, therefore, was to characterize the first blastomeres of E. maclovinus morphologically. Of a ‘pool’ of incubated eggs at 10.7 ± 0.5°C, 100 microphotographs of blastodiscs were extracted at different incubation periods from 0.25 to 5 h after fertilization and analyzed. Blastodiscs taken at 3.5, 4.0 and 5.0 h were characterized and classified into symmetric or asymmetric groups according to their morphology. The proportions of length (L) and width (W) of each blastomere were determined to establish its symmetry. Additionally, 20 microphotographs of blastodiscs of normal appearance were analyzed morphologically (control blastodisc: CB) and compared other blastodiscs (4.0 and 5.0 h). The results showed that before fertilization oocytes presented a somehow turgid aspect (maximum average diameter of 987 ± 41 µm) and after fertilization and hydration, their diameter increased to 1001.5 ± 11 µm (but not statistically significant) and presented a spherical shape. First cleavage ends after 3.5 h of development, forming two blastomeres 467 ± 45 μm length (L) and 328 ± 21 μm width (W) with a L/W ratio of 1.43 ± 0.19. The second cleavage ends after development at 4.5 h forming four blastomeres 238 ± 65 μm length and 227 ± 65 μm width with a ratio L/W of 1.06 ± 0.09. Five categories were identified during the blastomere characterization: 70% normal or symmetric; 8% with odd numbers of blastomeres; 6% unequal; 6% ‘pie shaped’ and 10% amorphous.


2014 ◽  
Vol 997 ◽  
pp. 317-320 ◽  
Author(s):  
Huan Wang ◽  
Ya Bing Liu ◽  
Ling Wei Kong

Spherical submicron SiO2 particles have been coated with luminescent Y2O3: Tb3+ layers by a Pechini sol-gel process, resulting in the formation of SiO2@Y2O3: Tb3+ core-shell particles. The obtained core–shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 450 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (35 nm for two deposition cycles). Under the excitation of ultraviolet, the Tb3+ ion mainly shows its characteristic emissions in the core-shell particles from Y2O3: Tb3+) shells. The emission intensity of Tb3+ can be tuned by the annealing temperature and the number of coating cycles.


2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


1992 ◽  
Vol 57 (12) ◽  
pp. 2529-2538 ◽  
Author(s):  
Krasimir Ivanov ◽  
Penka Litcheva ◽  
Dimitar Klissurski

Mn-Mo-O catalysts with a different Mo/Mn ratio have been prepared by precipitation. The precipitate composition as a function of solution concentration and pH was studied by X-ray, IR, thermal and chemical methods. Formation of manganese molybdates with MnMoO4.1.5H2O, Mn3Mo3O12.2.5H2O, and Mn3Mo4O15.4H2O composition has been supposed. It is concluded that pure MnMoO4 may be obtained in both acid and alkaline media, the pH values depending on the concentration of the initial solutions. The maximum Mo/Mn ratio in the precipitates is 1.33. The formation of pure Mn3Mo4O15.4H2O is possible in weakly acidic media. This process is favoured by increasing the concentration of initial solutions.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 854
Author(s):  
Ahmad Hivechi ◽  
Peiman Brouki Milan ◽  
Khashayar Modabberi ◽  
Moein Amoupour ◽  
Kaveh Ebrahimzadeh ◽  
...  

Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain’s EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats’ full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson’s Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.


2021 ◽  
Vol 7 (4) ◽  
pp. 277
Author(s):  
Danny Haelewaters ◽  
Hector Urbina ◽  
Samuel Brown ◽  
Shannon Newerth-Henson ◽  
M. Catherine Aime

Romaine lettuce (Lactuca sativa) is an important staple of American agriculture. Unlike many vegetables, romaine lettuce is typically consumed raw. Phylloplane microbes occur naturally on plant leaves; consumption of uncooked leaves includes consumption of phylloplane microbes. Despite this fact, the microbes that naturally occur on produce such as romaine lettuce are for the most part uncharacterized. In this study, we conducted culture-based studies of the fungal romaine lettuce phylloplane community from organic and conventionally grown samples. In addition to an enumeration of all such microbes, we define and provide a discussion of the genera that form the “core” romaine lettuce mycobiome, which represent 85.5% of all obtained isolates: Alternaria, Aureobasidium, Cladosporium, Filobasidium, Naganishia, Papiliotrema, Rhodotorula, Sampaiozyma, Sporobolomyces, Symmetrospora and Vishniacozyma. We highlight the need for additional mycological expertise in that 23% of species in these core genera appear to be new to science and resolve some taxonomic issues we encountered during our work with new combinations for Aureobasidiumbupleuri and Curvibasidium nothofagi. Finally, our work lays the ground for future studies that seek to understand the effect these communities may have on preventing or facilitating establishment of exogenous microbes, such as food spoilage microbes and plant or human pathogens.


Sign in / Sign up

Export Citation Format

Share Document