First Evaluation of Aquarius Soil Moisture Products UsingIn SituObservations and GLDAS Model Simulations

Author(s):  
Dongyang Li ◽  
Tianjie Zhao ◽  
Jiancheng Shi ◽  
Rajat Bindlish ◽  
Thomas J. Jackson ◽  
...  
2009 ◽  
Vol 16 (1) ◽  
pp. 141-150 ◽  
Author(s):  
M. Gebremichael ◽  
R. Rigon ◽  
G. Bertoldi ◽  
T. M. Over

Abstract. By providing continuous high-resolution simulations of soil moisture fields, distributed hydrologic models could be powerful tools to advance the scientific community's understanding of the space-time variability and scaling characteristics of soil moisture fields. However, in order to use the soil moisture simulations from hydrologic models with confidence, it is important to understand whether the models are able to represent in a reliable way the processes regulating soil moisture variability. In this study, a comparison of the scaling characteristics of spatial soil moisture fields derived from a set of microwave radiometer observations from the Southern Great Plains 1997 experiment and corresponding simulations using the distributed hydrologic model GEOtop is performed through the use of generalized variograms. Microwave observations and model simulations are in agreement with respect to suggesting the existence of a scale-invariance property in the variograms of spatial soil moisture fields, and indicating that the scaling characteristics vary with changes in the spatial average soil water content. However, observations and simulations give contradictory results regarding the relationship between the scaling parameters (i.e. spatial organization) and average soil water content. The drying process increased the spatial correlation of the microwave observations at both short and long separation distances while increasing the rate of decay of correlation with distance. The effect of drying on the spatial correlation of the model simulations was more complex, depending on the storm and the simulation examined, but for the largest storm in the simulation most similar to the observations, drying increased the long-range correlation but decreased the short-range. This is an indication that model simulations, while reproducing correctly the total streamflow at the outlet of the watershed, may not accurately reproduce the runoff production mechanisms. Consideration of the scaling characteristics of spatial soil moisture fields can therefore serve as a more intensive means for validating distributed hydrologic models, compared to the traditional approach of only comparing the streamflow hydrographs.


2020 ◽  
Author(s):  
Bibi S Naz ◽  
Wendy Sharples ◽  
Klaus Goergen ◽  
Stefan Kollet

<p> <span>High-resolution large-scale predictions of hydrologic states and fluxes are important for many regional-scale applications and water resource management. However, because of uncertainties related to forcing data, model structural errors arising from simplified representations of hydrological processes or uncertain model parameters, model simulations remain uncertain. To quantify this uncertainty, multi-model simulations were performed at 3km resolution over the European continent using the Community Land Model (CLM3.5) and the ParFlow hydrologic model. While Parflow uses a similar approach as CLM in simulating the snow, vegetation and land-atmosphere exchange processes, it simulates three-dimensional variably saturated groundwater flow solving Richards equation and overland flow with a two-dimensional kinematic wave approximation. </span><span>The </span><span>CLM</span><span>3.5</span><span> uses a simple groundwater model to account for groundwater recharge and discharge processes. Both models were driven with the COSMO-REA6 reanalysis dataset at 6km resolution for the time period from 2000 to 2006 at an hourly time step, and both used the same datasets for the static input variables (such as topography, vegetation and soil properties). The performance of both models was analyzed through comparisons with independent observations including satellite-derived and in-situ soil moisture, evapotranspiration, river discharge, water table depth and total water storage datasets. Overall, both models capture the interannual variability in the hydrologic states and fluxes well, however differences in performance between models showed the uncertainty associated with the representation of hydrological processes, such as groundwater flow and soil moisture and its control on latent and sensible heat fluxes at the surface.</span></p>


2020 ◽  
Author(s):  
Tiago Ramos ◽  
Lucian Simionesei ◽  
Marta Basso ◽  
Vivien Stefan ◽  
Ana Oliveira ◽  
...  

<p>Watershed modelling is one of the most important assessment tools in watershed planning and management. Nonetheless, the classic calibration of watershed models, in which a few discharge gauges near the outlet of a catchment are used to compare measured and simulated streamflow, is often criticized by not assuring that relevant processes such as evapotranspiration, soil moisture, crop growth, and groundwater recharge are well represented in the catchment area. This study aimed to simulate streamflow in two Mediterranean catchments, Orba (778km<sup>2</sup>) in Italy and Segre (1286km<sup>2</sup>) in Spain, using the physically-based, fully distributed MOHID-Land model. Model calibration/validation of streamflow was first performed following a classical approach. Different products derived from remote sensing platforms were then used to evaluate the adequacy of model simulations of crop growth and soil moisture in the catchment area.</p><p>The MOHID-Land model considers four compartments or mediums (atmosphere, porous media, soil surface and river network), computing water dynamics through the different mediums using mass and momentum conservation equations. The model was implemented in the two simulated catchments with a resolution of 1 km. Data inputs included the Digital Elevation Model over Europe (EU-DEM) with a resolution of 30 m; the soil hydraulic properties map from EU-SoilHydroGrids ver1.0 with a resolution of 250 m; the CORINE land cover map from 2012 with a resolution of 100 m; the hourly weather data (precipitation, wind velocity, relative air humidity, solar radiation and surface air temperature) from local weather stations; and the reservoir discharge data from governmental and/or regional agencies. Simulations were run from 2006-2014 for Orba and from 2008-2018 for Segre, and included a model warm-up, a calibration, and a validation period. Comparison between simulated and measured flows were performed in 2 and 10 hydrometric stations located in the Orba and Segre catchments, respectively. Four statistical parameters (R<sup>2</sup>, RMSE, PBIAS and NSE) were used to evaluate model performance, confirming the good fitting of model simulations to measured data.</p><p>Model simulations of leaf area index (LAI) were then compared with LAI maps at 30 m resolution derived from ATCOR and Landsat 8 imagery data using the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI). Furthermore, model simulation of soil moisture were also compared at the surface depth (0-5 cm) with soil moisture maps at 1 km resolution created with the DISaggregation based on a Physical And Theoretical scale CHange (DISPATCH) algorithm for the downscaling of the 40 km SMOS (Soil Moisture and Ocean Salinity) soil moisture data using land surface temperature (LST) and NDVI data. Results showed the fundamental differences between the MOHID-Land and remote sensing outputs, with major differences being analyzed by soil units and land use classes.</p>


2021 ◽  
Author(s):  
Yaoping Wang ◽  
Jiafu Mao ◽  
Mingzhou Jin ◽  
Forrest M. Hoffman ◽  
Xiaoying Shi ◽  
...  

Abstract. Soil moisture (SM) datasets are critical to understanding the global water, energy, and biogeochemical cycles and benefit extensive societal applications. However, individual sources of SM data (e.g., in situ and satellite observations, reanalysis, offline land surface model simulations, Earth system model simulations) have source-specific limitations and biases related to the spatiotemporal continuity, resolutions, and modeling/retrieval assumptions. Here, we developed seven global, gap-free, long-term (1970–2016), multi-layer (0–10, 10–30, 30–50, and 50–100 cm) SM products at monthly 0.5° resolution (available at https://doi.org/10.6084/m9.figshare.13661312.v1) by synthesizing a wide range of SM datasets using three statistical methods (unweighted averaging, optimal linear combination, and emergent constraint). The merged products outperformed their source datasets when evaluated with in situ observations and the latest gridded datasets that did not enter merging because of insufficient spatial, temporal, or soil layer coverage. Assessed against in situ observations, the global mean bias of the synthesized SM data ranged from −0.044 to 0.033 m3/m3, root mean squared error from 0.076 to 0.104 m3/m3, and Pearson correlation from 0.35 to 0.67. The merged SM datasets also showed the ability to capture historical large-scale drought events and physically plausible global sensitivities to observed meteorological factors. Three of the new SM products, produced by applying any of the three merging methods onto the source datasets excluding the Earth system models, were finally recommended for future applications because of their better performances than the Earth system model–dependent merged estimates. Despite uncertainties in the raw SM datasets and fusion methods, these hybrid products create added value over existing SM datasets because of the performance improvement and harmonized spatial, temporal, and vertical coverages, and they provide a new foundation for scientific investigation and resource management.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Paul X. Flanagan ◽  
Jeffrey B. Basara ◽  
Bradley G. Illston ◽  
Jason A. Otkin

Observations from the Oklahoma Mesonet and high resolution Weather Research and Forecasting model simulations were used to evaluate the effect that the dry line and large-scale atmospheric patterns had on drought evolution during 2011. Mesonet observations showed that a “dry” and “wet” pattern developed across Oklahoma due to anomalous atmospheric patterns. The location of the dry line varied due to this “dry” and “wet” pattern, with the average dry line location around 1.5° longitude further to the east than climatology. Model simulations were used to further quantify the impact of variable surface conditions on dry line evolution and convective initiation (CI) during April and May 2011. Specifically, soil moisture conditions were altered to depict “wet” and “dry” conditions across the domain by replacing the soil moisture values by each soil category’s porosity or wilting point value. Overall, the strength of the dry line boundary, its position, and subsequent CI were dependent on the modification of soil moisture. The simulations demonstrated that modifying soil moisture impacted the nature of the dry line and showed that soil moisture conditions during the first half of the warm season modified the dry line pattern and influenced the evolution and perpetuation of drought over Oklahoma.


2017 ◽  
Vol 55 (9) ◽  
pp. 4899-4912 ◽  
Author(s):  
Jelena Stamenkovic ◽  
Leila Guerriero ◽  
Paolo Ferrazzoli ◽  
Claudia Notarnicola ◽  
Felix Greifeneder ◽  
...  

2018 ◽  
Vol 22 (6) ◽  
pp. 3515-3532 ◽  
Author(s):  
Clement Albergel ◽  
Emanuel Dutra ◽  
Simon Munier ◽  
Jean-Christophe Calvet ◽  
Joaquin Munoz-Sabater ◽  
...  

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 over the period 2010–2016. ERA-5 has important changes relative to the former ERA-Interim atmospheric reanalysis including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis and one of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model (LSM). To that end, both ERA-5 and ERA-Interim are used to force the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM fully coupled with the Total Runoff Integrating Pathways (TRIP) scheme adapted for the CNRM (Centre National de Recherches Météorologiques) continental hydrological system within the SURFEX (SURFace Externalisée) modelling platform of Météo-France. Simulations cover the 2010–2016 period at half a degree spatial resolution. The ERA-5 impact on ISBA LSM relative to ERA-Interim is evaluated using remote sensing and in situ observations covering a substantial part of the land surface storage and fluxes over the continental US domain. The remote sensing observations include (i) satellite-driven model estimates of land evapotranspiration, (ii) upscaled ground-based observations of gross primary production, (iii) satellite-derived estimates of surface soil moisture and (iv) satellite-derived estimates of leaf area index (LAI). The in situ observations cover (i) soil moisture, (ii) turbulent heat fluxes, (iii) river discharges and (iv) snow depth. ERA-5 leads to a consistent improvement over ERA-Interim as verified by the use of these eight independent observations of different land status and of the model simulations forced by ERA-5 when compared with ERA-Interim. This is particularly evident for the land surface variables linked to the terrestrial hydrological cycle, while variables linked to vegetation are less impacted. Results also indicate that while precipitation provides, to a large extent, improvements in surface fields (e.g. large improvement in the representation of river discharge and snow depth), the other atmospheric variables play an important role, contributing to the overall improvements. These results highlight the importance of enhanced meteorological forcing quality provided by the new ERA-5 reanalysis, which will pave the way for a new generation of land-surface developments and applications.


2020 ◽  
Vol 12 (7) ◽  
pp. 1169
Author(s):  
Jifu Yin ◽  
Xiwu Zhan

Due to the limitations of satellite antenna technology, current operational microwave soil moisture (SM) data products are typically at tens of kilometers spatial resolutions. Many approaches have thus been proposed to generate finer resolution SM data using ancillary information, but it is still unknown if assimilation of the finer spatial resolution SM data has beneficial impacts on model skills. In this paper, a synthetic experiment is thus conducted to identify the benefits of SM observations at a finer spatial resolution on the Noah-MP land surface model. Results of this study show that the performance of the Noah-MP model is significantly improved with the benefits of assimilating 1 km SM observations in comparison with the assimilation of SM data at coarser resolutions. Downscaling satellite microwave SM observations from coarse spatial resolution to 1 km resolution is recommended, and the assimilation of 1 km remotely sensed SM retrievals is suggested for NOAA National Weather Service and National Water Center.


2018 ◽  
Vol 54 (9) ◽  
pp. 6772-6791 ◽  
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jicheng Liu ◽  
Martha C. Anderson

Sign in / Sign up

Export Citation Format

Share Document