CMOS-Integrated Optical Receivers for On-Chip Interconnects

2010 ◽  
Vol 16 (5) ◽  
pp. 1376-1385 ◽  
Author(s):  
Solomon Assefa ◽  
Fengnian Xia ◽  
William M. J. Green ◽  
Clint L. Schow ◽  
Alexander V. Rylyakov ◽  
...  
2021 ◽  
Author(s):  
Qi Yao ◽  
Ya-Qing Bie ◽  
Jianfa Chen ◽  
Jinyang Li ◽  
Feng Li ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. Xiong ◽  
C. Forsythe ◽  
M. Jung ◽  
A. S. McLeod ◽  
S. S. Sunku ◽  
...  

Abstract Photonic crystals are commonly implemented in media with periodically varying optical properties. Photonic crystals enable exquisite control of light propagation in integrated optical circuits, and also emulate advanced physical concepts. However, common photonic crystals are unfit for in-operando on/off controls. We overcome this limitation and demonstrate a broadly tunable two-dimensional photonic crystal for surface plasmon polaritons. Our platform consists of a continuous graphene monolayer integrated in a back-gated platform with nano-structured gate insulators. Infrared nano-imaging reveals the formation of a photonic bandgap and strong modulation of the local plasmonic density of states that can be turned on/off or gradually tuned by the applied gate voltage. We also implement an artificial domain wall which supports highly confined one-dimensional plasmonic modes. Our electrostatically-tunable photonic crystals are derived from standard metal oxide semiconductor field effect transistor technology and pave a way for practical on-chip light manipulation.


2003 ◽  
Author(s):  
Martin Leich ◽  
Volker Hurm ◽  
Jorn Berger ◽  
Eric Dietrich ◽  
Jooyoung Sohn ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hao Hu ◽  
Jiwei Qi ◽  
Qiang Wu ◽  
Xianhui Fu ◽  
Hongjin Wu ◽  
...  

AbstractWe designed a simple on-chip integrated optical isolator made up of a metal–insulator–metal waveguide and a disc cavity filled with magneto-optical material to enhance the transverse magneto-optical effect through the coin paradox spin–orbit interaction (SOI). The simulation results of the non-reciprocal transmission properties of this optical structure show that a high-performance on-chip integrated optical isolator is obtained. The maximum isolation ratio is greater than 60 dB with a corresponding insertion loss of about 2 dB. The great performance of the optical isolator is attributed to the strong transverse magneto-optical effect, which is enhanced by the coin paradox SOI. Moreover, the enhancement of the transverse magneto-optical effect through the coin paradox SOI is more substantial for smaller azimuthal mode number n. Benefiting from this, the transverse magneto-optical effect remains strong in a wide wavelength range. Additionally, a smaller cavity has a stronger transverse magneto-optical effect in the same wavelength range. Our research provides a new perspective for creating highly integrated magneto-optical devices.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4619
Author(s):  
Sean C. Morgan ◽  
Andre D. Hendricks ◽  
Mae L. Seto ◽  
Vincent J. Sieben

Presented here is the fabrication and characterization of a tunable microfluidic check valve for use in marine nutrient sensing. The ball-style valve makes use of a rare-earth permanent magnet, which exerts a pulling force to ensure it remains passively sealed until the prescribed cracking pressure is met. By adjusting the position of the magnet, the cracking pressure is shown to be customizable to meet design requirements. Further applicability is shown by integrating the valve into a poly(methyl methacrylate) (PMMA) lab-on-chip device with an integrated optical absorbance cell for nitrite detection in seawater. Micro-milling is used to manufacture both the valve and the micro-channel structures. The valve is characterized up to a flow rate of 14 mL min−1 and exhibits low leakage rates at high back pressures (<2 µL min−1 at ~350 kPa). It is low cost, requires no power, and is easily implemented on microfluidic platforms.


2019 ◽  
Vol 97 ◽  
pp. 109386 ◽  
Author(s):  
Minghui Jiang ◽  
Daming Zhang ◽  
Tianhang Lian ◽  
Lilei Wang ◽  
Donghai Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document