A Six-Port MIMO Antenna System With High Isolation for 5-GHz WLAN Access Points

2014 ◽  
Vol 13 ◽  
pp. 880-883 ◽  
Author(s):  
Wangwang Han ◽  
Xiaopeng Zhou ◽  
Jun Ouyang ◽  
Yan Li ◽  
Rui Long ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


2009 ◽  
Vol 45 (15) ◽  
pp. 771 ◽  
Author(s):  
S. Zhang ◽  
J. Xiong ◽  
S. He

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1582
Author(s):  
Ahsan Altaf ◽  
Amjad Iqbal ◽  
Amor Smida ◽  
Jamel Smida ◽  
Ayman A. Althuwayb ◽  
...  

Multiple-input multiple-output (MIMO) scheme refers to the technology where more than one antenna is used for transmitting and receiving the information packets. It enhances the channel capacity without more power. The available space in the modern compact devices is limited and MIMO antenna elements need to be placed closely. The closely spaced antennas undergo an undesirable coupling, which deteriorates the antenna parameters. In this paper, an ultra wide-band (UWB) MIMO antenna system with an improved isolation is presented. The system has a wide bandwidth range from 2–13.7 GHz. The antenna elements are closely placed with an edge to edge distance of 3 mm. In addition to the UWB attribute of the system, the mutual coupling between the antennas is reduced by using slotted stub. The isolation is improved and is below −20 dB within the whole operating range. By introducing the decoupling network, the key performance parameters of the antenna are not affected. The system is designed on an inexpensive and easily available FR-4 substrate. To better understand the working of the proposed system, the equivalent circuit model is also presented. To model the proposed system accurately, different radiating modes and inter-mode coupling is considered and modeled. The EM model, circuit model, and the measured results are in good agreement. Different key performance parameters of the system and the antenna element such as envelope correlation coefficient (ECC), diversity gain, channel capcity loss (CCL) gain, radiation patterns, surface currents, and scattering parameters are presented. State-of-the-art comparison with the recent literature shows that the proposed antenna has minimal dimensions, a large bandwidth, an adequate gain value and a high isolation. It is worth noticeable that the proposed antenna has high isolation even the patches has low edge-to-edge gap (3 mm). Based on its good performance and compact dimensions, the proposed antenna is a suitable choice for high throughput compact UWB transceivers.


2021 ◽  
Vol 35 (11) ◽  
pp. 1314-1315
Author(s):  
Guobo Wei ◽  
Quanyuan Feng

A side-frame dual-band multi-input multi-output (MIMO) antenna system for fifth-generation (5G) mobile communication in smartphone applications is presented, operating in 3.5 GHz band (3400-3600 MHz) and 5 GHz band (4800-5000 MHz). The proposed four-element antenna array is placed at four corners of the circuit board and printed on the side edge frame. The height of the structure is only 4.1 mm, which is compatible for ultra-thin full screen smartphones. According to the verification of HFSS and CST, ideal impedance matching bandwidths (superior to 10dB) and excellent isolations (superior to 18 dB) are obtained over the 3.5 GHz band and 5 GHz band, with peak gain of 6.18 dB and 4.9 dB, respectively.


Author(s):  
Dang Thi Tu My

A dual-band MIMO antenna with a high isolation is presented in this paper. The proposed MIMO antenna consists of two identical E-shaped micro-strip antennas which are designed on an FR4 substrate. The antenna is designed for radiating at 2.6 GHz and 5 GHz that can be used for the applications of 4G and 5G systems, respectively. Neutral line technique is used for mutual coupling reduction between the E-shaped antenna. Good isolation characteristics are obtained by using single micro-strip line connected between two elements of MIMO antenna. The antenna is fabricated and measured, and good agreement is achieved between the experimental and simulated results.


2017 ◽  
Vol 59 (5) ◽  
pp. 1178-1182 ◽  
Author(s):  
Haixiong Li ◽  
Gaigai Zhang ◽  
Jiachen Xu ◽  
Jun Ding ◽  
Chenjiang Guo

Sign in / Sign up

Export Citation Format

Share Document