Ultra-Low Noise Schottky Junction Tri-Gate Silicon Nanowire FET on Bonded Silicon-on-Insulator Substrate

2021 ◽  
Vol 42 (4) ◽  
pp. 469-472
Author(s):  
Yingtao Yu ◽  
Si Chen ◽  
Qitao Hu ◽  
Paul Solomon ◽  
Zhen Zhang
2019 ◽  
Vol 9 (5) ◽  
pp. 818 ◽  
Author(s):  
Shinya Kato ◽  
Yasuyoshi Kurokawa ◽  
Kazuhiro Gotoh ◽  
Tetsuo Soga

This study proposes metal-assisted chemical etching (MAE) as a facile method to fabricate silicon nanowire (SiNW) array structures, with high optical confinement for thin crystalline silicon solar cells. Conventional SiNW arrays are generally fabricated on Si wafer substrates. However, tests on conventional SiNW-based solar cells cannot determine whether the photo-current is derived from SiNWs or from the Si wafer. Herein, SiNW arrays were fabricated on a silicon-on-insulator substrate with a 10-μm-thick silicon layer for measuring the photocurrent of the SiNW only. The 9 μm-long p-type SiNW arrays were applied to a solar cell structure fabricated using an n-type H-doped amorphous Si layer, thereby confirming the photovoltaic effect. However, the device exhibited a conversion efficiency of 0.0017% because of a low short-circuit current (Jsc) and a low open-circuit voltage (Voc). The low Jsc resulted from a high series resistance and high absorption loss from the amorphous Si layer, whereas the low Voc resulted from the high surface recombination velocity of the SiNW array structure. Therefore, reducing the surface recombination of SiNW-based solar cells can improve their conversion efficiency.


2018 ◽  
Vol 8 (7) ◽  
pp. 1139 ◽  
Author(s):  
Minh Tran ◽  
Duanni Huang ◽  
Tin Komljenovic ◽  
Jonathan Peters ◽  
Aditya Malik ◽  
...  

Integrated ultra-low-loss waveguides are highly desired for integrated photonics to enable applications that require long delay lines, high-Q resonators, narrow filters, etc. Here, we present an ultra-low-loss silicon waveguide on 500 nm thick Silicon-On-Insulator (SOI) platform. Meter-scale delay lines, million-Q resonators and tens of picometer bandwidth grating filters are experimentally demonstrated. We design a low-loss low-reflection taper to seamlessly integrate the ultra-low-loss waveguide with standard heterogeneous Si/III-V integrated photonics platform to allow realization of high-performance photonic devices such as ultra-low-noise lasers and optical gyroscopes.


2019 ◽  
Vol 66 (9) ◽  
pp. 3994-4000 ◽  
Author(s):  
Xi Chen ◽  
Si Chen ◽  
Shi-Li Zhang ◽  
Paul Solomon ◽  
Zhen Zhang

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


ACS Sensors ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 427-433 ◽  
Author(s):  
Xi Chen ◽  
Si Chen ◽  
Qitao Hu ◽  
Shi-Li Zhang ◽  
Paul Solomon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document