The Unknown Spatial Quality of Dense Point Clouds Derived From Stereo Images

2015 ◽  
Vol 12 (5) ◽  
pp. 1013-1017 ◽  
Author(s):  
André Jalobeanu ◽  
Gil Goncalves
Author(s):  
R. Moritani ◽  
S. Kanai ◽  
H. Date ◽  
Y. Niina ◽  
R. Honma

<p><strong>Abstract.</strong> In this paper, we introduce a method for predicting the quality of dense points and selecting low-quality regions on the points generated by the structure from motion (SfM) and multi-view stereo (MVS) pipeline to realize high-quality and efficient as-is model reconstruction, using only results from the former: sparse point clouds and camera poses. The method was shown to estimate the quality of the final dense points as the quality predictor on an approximated model obtained from SfM only, without requiring the time-consuming MVS process. Moreover, the predictors can be used for selection of low-quality regions on the approximated model to estimate the next-best optimum camera poses which could improve quality. Furthermore, the method was applied to the prediction of dense point quality generated from the image sets of a concrete bridge column and construction site, and the prediction was validated in a time much shorter than using MVS. Finally, we discussed the correlation between the predictors and the final dense point quality.</p>


Author(s):  
H.-J. Przybilla ◽  
M. Lindstaedt ◽  
T. Kersten

<p><strong>Abstract.</strong> The quality of image-based point clouds generated from images of UAV aerial flights is subject to various influencing factors. In addition to the performance of the sensor used (a digital camera), the image data format (e.g. TIF or JPG) is another important quality parameter. At the UAV test field at the former Zollern colliery (Dortmund, Germany), set up by Bochum University of Applied Sciences, a medium-format camera from Phase One (IXU 1000) was used to capture UAV image data in RAW format. This investigation aims at evaluating the influence of the image data format on point clouds generated by a Dense Image Matching process. Furthermore, the effects of different data filters, which are part of the evaluation programs, were considered. The processing was carried out with two software packages from Agisoft and Pix4D on the basis of both generated TIF or JPG data sets. The point clouds generated are the basis for the investigation presented in this contribution. Point cloud comparisons with reference data from terrestrial laser scanning were performed on selected test areas representing object-typical surfaces (with varying surface structures). In addition to these area-based comparisons, selected linear objects (profiles) were evaluated between the different data sets. Furthermore, height point deviations from the dense point clouds were determined using check points. Differences in the results generated through the two software packages used could be detected. The reasons for these differences are filtering settings used for the generation of dense point clouds. It can also be assumed that there are differences in the algorithms for point cloud generation which are implemented in the two software packages. The slightly compressed JPG image data used for the point cloud generation did not show any significant changes in the quality of the examined point clouds compared to the uncompressed TIF data sets.</p>


Author(s):  
A. Murtiyoso ◽  
P. Grussenmeyer ◽  
T. Freville

Close-range photogrammetry is an image-based technique which has often been used for the 3D documentation of heritage objects. Recently, advances in the field of image processing and UAVs (Unmanned Aerial Vehicles) have resulted in a renewed interest in this technique. However, commercially ready-to-use UAVs are often equipped with smaller sensors in order to minimize payload and the quality of the documentation is still an issue. In this research, two commercial UAVs (the Sensefly Albris and DJI Phantom 3 Professional) were setup to record the 19<sup>th</sup> century St-Pierre-le-Jeune church in Strasbourg, France. Several software solutions (commercial and open source) were used to compare both UAVs’ images in terms of calibration, accuracy of external orientation, as well as dense matching. Results show some instability in regards to the calibration of Phantom 3, while the Albris had issues regarding its aerotriangulation results. Despite these shortcomings, both UAVs succeeded in producing dense point clouds of up to a few centimeters in accuracy, which is largely sufficient for the purposes of a city 3D GIS (Geographical Information System). The acquisition of close range images using UAVs also provides greater LoD flexibility in processing. These advantages over other methods such as the TLS (Terrestrial Laser Scanning) or terrestrial close range photogrammetry can be exploited in order for these techniques to complement each other.


Author(s):  
M. Franzini ◽  
A. M. Manzino ◽  
V. Casella

Abstract. Dense point clouds can be nowadays considered the main product of UAV (Unmanned Aerial Vehicle) photogrammetric processing and clouds registration is still a key aspect in case of blocks acquired apart. In the paper some overlapping datasets, acquired with a multispectral Parrot Sequoia camera above some rice fields, are analysed in a single block approach. Since the sensors is equipped with a navigation-grade sensor, the georeferencing information is affected by large errors and the so obtained dense point clouds are significantly far apart: to register them the Iterative Closes Point (ICP) technique is applied. ICP convergence is fundamentally based on the correct selection of the points to be coupled, and the paper proposes an innovative procedure in which a double density points subset is selected in relation to terrain characteristics. This approach reduces the complexity of the calculation and avoids that flat terrain parts, where most of the original points, are de-facto overweighed. Starting from the original dense cloud, eigenfeatures are extracted for each point and clustering is then performed to group them in two classes connected to terrain geometry, flat terrain or not; two metrics are adopted and compared for k-means clustering, Euclidean and City Block. Segmentation results are evaluated visually and by comparison with manually performed classification; ICP are then performed and the quality of registration is assessed too. The presented results show how the proposed procedure seem capable to register clouds even far apart with a good overall accuracy.


Author(s):  
F. He ◽  
A. Habib ◽  
A. Al-Rawabdeh

In this paper, we proposed a new refinement procedure for the semi-global dense image matching. In order to remove outliers and improve the disparity image derived from the semi-global algorithm, both the local smoothness constraint and point cloud segments are utilized. Compared with current refinement technique, which usually assumes the correspondences between planar surfaces and 2D image segments, our proposed approach can effectively deal with object with both planar and curved surfaces. Meanwhile, since 3D point clouds contain more precise geometric information regarding to the reconstructed objects, the planar surfaces identified in our approach can be more accurate. In order to illustrate the feasibility of our approach, several experimental tests are conducted on both Middlebury test and real UAV-image datasets. The results demonstrate that our approach has a good performance on improving the quality of the derived dense image-based point cloud.


Author(s):  
Guillermo Oliver ◽  
Pablo Gil ◽  
Jose F. Gomez ◽  
Fernando Torres

AbstractIn this paper, we present a robotic workcell for task automation in footwear manufacturing such as sole digitization, glue dispensing, and sole manipulation from different places within the factory plant. We aim to make progress towards shoe industry 4.0. To achieve it, we have implemented a novel sole grasping method, compatible with soles of different shapes, sizes, and materials, by exploiting the particular characteristics of these objects. Our proposal is able to work well with low density point clouds from a single RGBD camera and also with dense point clouds obtained from a laser scanner digitizer. The method computes antipodal grasping points from visual data in both cases and it does not require a previous recognition of sole. It relies on sole contour extraction using concave hulls and measuring the curvature on contour areas. Our method was tested both in a simulated environment and in real conditions of manufacturing at INESCOP facilities, processing 20 soles with different sizes and characteristics. Grasps were performed in two different configurations, obtaining an average score of 97.5% of successful real grasps for soles without heel made with materials of low or medium flexibility. In both cases, the grasping method was tested without carrying out tactile control throughout the task.


2014 ◽  
Vol 615 ◽  
pp. 9-14 ◽  
Author(s):  
Claudio Bernal ◽  
Beatriz de Agustina ◽  
Marta María Marín ◽  
Ana Maria Camacho

Some manufacturers of 3D digitizing systems are developing and market more accurate, fastest and affordable systems of fringe projection based on blue light technology. The aim of the present work is the determination of the quality and accuracy of the data provided by the LED structured light scanner Comet L3D (Steinbichler). The quality and accuracy of the cloud of points produced by the scanner is determined by measuring a number of gauge blocks of different sizes. The accuracy range of the scanner has been established through multiple digitizations showing the dependence on different factors such as the characteristics of the object and scanning procedure. Although many factors influence, accuracies announced by manufacturer have been achieved under optimal conditions and it has been noted that the quality of the point clouds (density, noise, dispersion of points) provided by this system is higher than that obtained with laser technology devices.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4418 ◽  
Author(s):  
Aleksandra Sekrecka ◽  
Michal Kedzierski

Commonly used image fusion techniques generally produce good results for images obtained from the same sensor, with a standard ratio of spatial resolution (1:4). However, an atypical high ratio of resolution reduces the effectiveness of fusion methods resulting in a decrease in the spectral or spatial quality of the sharpened image. An important issue is the development of a method that allows for maintaining simultaneous high spatial and spectral quality. The authors propose to strengthen the pan-sharpening methods through prior modification of the panchromatic image. Local statistics of the differences between the original panchromatic image and the intensity of the multispectral image are used to detect spatial details. The Euler’s number and the distance of each pixel from the nearest pixel classified as a spatial detail determine the weight of the information collected from each integrated image. The research was carried out for several pan-sharpening methods and for data sets with different levels of spectral matching. The proposed solution allows for a greater improvement in the quality of spectral fusion, while being able to identify the same spatial details for most pan-sharpening methods and is mainly dedicated to Intensity-Hue-Saturation based methods for which the following improvements in spectral quality were achieved: about 30% for the urbanized area and about 15% for the non-urbanized area.


2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


Sign in / Sign up

Export Citation Format

Share Document