scholarly journals Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4418 ◽  
Author(s):  
Aleksandra Sekrecka ◽  
Michal Kedzierski

Commonly used image fusion techniques generally produce good results for images obtained from the same sensor, with a standard ratio of spatial resolution (1:4). However, an atypical high ratio of resolution reduces the effectiveness of fusion methods resulting in a decrease in the spectral or spatial quality of the sharpened image. An important issue is the development of a method that allows for maintaining simultaneous high spatial and spectral quality. The authors propose to strengthen the pan-sharpening methods through prior modification of the panchromatic image. Local statistics of the differences between the original panchromatic image and the intensity of the multispectral image are used to detect spatial details. The Euler’s number and the distance of each pixel from the nearest pixel classified as a spatial detail determine the weight of the information collected from each integrated image. The research was carried out for several pan-sharpening methods and for data sets with different levels of spectral matching. The proposed solution allows for a greater improvement in the quality of spectral fusion, while being able to identify the same spatial details for most pan-sharpening methods and is mainly dedicated to Intensity-Hue-Saturation based methods for which the following improvements in spectral quality were achieved: about 30% for the urbanized area and about 15% for the non-urbanized area.

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 229
Author(s):  
Jiao Jiao ◽  
Lingda Wu

In order to improve the fusion quality of multispectral (MS) and panchromatic (PAN) images, a pansharpening method with a gradient domain guided image filter (GIF) that is based on non-subsampled shearlet transform (NSST) is proposed. First, multi-scale decomposition of MS and PAN images is performed by NSST. Second, different fusion rules are designed for high- and low-frequency coefficients. A fusion rule that is based on morphological filter-based intensity modulation (MFIM) technology is proposed for the low-frequency coefficients, and the edge refinement is carried out based on a gradient domain GIF to obtain the fused low-frequency coefficients. For the high-frequency coefficients, a fusion rule based on an improved pulse coupled neural network (PCNN) is adopted. The gradient domain GIF optimizes the firing map of the PCNN model, and then the fusion decision map is calculated to guide the fusion of the high-frequency coefficients. Finally, the fused high- and low-frequency coefficients are reconstructed with inverse NSST to obtain the fusion image. The proposed method was tested using the WorldView-2 and QuickBird data sets; the subjective visual effects and objective evaluation demonstrate that the proposed method is superior to the state-of-the-art pansharpening methods, and it can efficiently improve the spatial quality and spectral maintenance.


Author(s):  
S. Niazi ◽  
M. Mokhtarzade ◽  
F. Saeedzadeh

Pan sharpening methods aim to produce a more informative image containing the positive aspects of both source images. However, the pan sharpening process usually introduces some spectral and spatial distortions in the resulting fused image. The amount of these distortions varies highly depending on the pan sharpening technique as well as the type of data. Among the existing pan sharpening methods, the Intensity-Hue-Saturation (IHS) technique is the most widely used for its efficiency and high spatial resolution. When the IHS method is used for IKONOS or QuickBird imagery, there is a significant color distortion which is mainly due to the wavelengths range of the panchromatic image. Regarding the fact that in the green vegetated regions panchromatic gray values are much larger than the gray values of intensity image. A novel method is proposed which spatially adjusts the intensity image in vegetated areas. To do so the normalized difference vegetation index (NDVI) is used to identify vegetation areas where the green band is enhanced according to the red and NIR bands. In this way an intensity image is obtained in which the gray values are comparable to the panchromatic image. Beside the genetic optimization algorithm is used to find the optimum weight parameters in order to gain the best intensity image. Visual and statistical analysis proved the efficiency of the proposed method as it significantly improved the fusion quality in comparison to conventional IHS technique. The accuracy of the proposed pan sharpening technique was also evaluated in terms of different spatial and spectral metrics. In this study, 7 metrics (Correlation Coefficient, ERGAS, RASE, RMSE, SAM, SID and Spatial Coefficient) have been used in order to determine the quality of the pan-sharpened images. Experiments were conducted on two different data sets obtained by two different imaging sensors, IKONOS and QuickBird. The result of this showed that the evaluation metrics are more promising for our fused image in comparison to other pan sharpening methods.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5146 ◽  
Author(s):  
Sekrecka ◽  
Kedzierski ◽  
Wierzbicki

In recent years, many techniques of fusion of multi-sensors satellite images have been developed. This article focuses on examining and improvement the usability of pansharpened images for object detection, especially when fusing data with a high GSD ratio. A methodology to improve an interpretative ability of pansharpening results is based on pre-processing of the panchromatic image using Logarithmic-Laplace filtration. The proposed approach was used to examine several different pansharpening methods and data sets with different spatial resolution ratios, i.e., from 1:4 to 1:60. The obtained results showed that the proposed approach significantly improves an object detection of fused images, especially for imagery data with a high-resolution ratio. The interpretative ability was assessed using qualitative method (based on image segmentation) and quantitative method (using an indicator based on the Speeded Up Robust Features (SURF) detector). In the case of combining data acquired with the same sensor the interpretative potential had improved by a dozen or so per cent. However, for data with a high resolution ratio, the improvement was several dozen, or even several hundred per cents, in the case of images blurred after pansharpening by the classic method (with original panchromatic image). Image segmentation showed that it is possible to recognize narrow objects that were originally blurred and difficult to identify. In addition, for panchromatic images acquired by WorldView-2, the proposed approach improved not only object detection but also the spectral quality of the fused image.


2019 ◽  
Vol 11 (22) ◽  
pp. 2691 ◽  
Author(s):  
Gang He ◽  
Jiaping Zhong ◽  
Jie Lei ◽  
Yunsong Li ◽  
Weiying Xie

Hyperspectral (HS) imaging is conducive to better describing and understanding the subtle differences in spectral characteristics of different materials due to sufficient spectral information compared with traditional imaging systems. However, it is still challenging to obtain high resolution (HR) HS images in both the spectral and spatial domains. Different from previous methods, we first propose spectral constrained adversarial autoencoder (SCAAE) to extract deep features of HS images and combine with the panchromatic (PAN) image to competently represent the spatial information of HR HS images, which is more comprehensive and representative. In particular, based on the adversarial autoencoder (AAE) network, the SCAAE network is built with the added spectral constraint in the loss function so that spectral consistency and a higher quality of spatial information enhancement can be ensured. Then, an adaptive fusion approach with a simple feature selection rule is induced to make full use of the spatial information contained in both the HS image and PAN image. Specifically, the spatial information from two different sensors is introduced into a convex optimization equation to obtain the fusion proportion of the two parts and estimate the generated HR HS image. By analyzing the results from the experiments executed on the tested data sets through different methods, it can be found that, in CC, SAM, and RMSE, the performance of the proposed algorithm is improved by about 1.42%, 13.12%, and 29.26% respectively on average which is preferable to the well-performed method HySure. Compared to the MRA-based method, the improvement of the proposed method in in the above three indexes is 17.63%, 0.83%, and 11.02%, respectively. Moreover, the results are 0.87%, 22.11%, and 20.66%, respectively, better than the PCA-based method, which fully illustrated the superiority of the proposed method in spatial information preservation. All the experimental results demonstrate that the proposed method is superior to the state-of-the-art fusion methods in terms of subjective and objective evaluations.


2019 ◽  
Vol 32 (4) ◽  
pp. 35-50
Author(s):  
Monika Maria Cysek-Pawlak ◽  
Tomasz Krystkowski ◽  
Jakub Misiak

The purpose of this article is to evaluate the role of a Traditional Neighborhood Design (TND), one of New Urbanist principles, in the regeneration of post-industrial city centers. Its structure is the following. First, the contemporary elements of the TND are identified. Then, their actual versus declared use in strategies aimed at the renewal of major post-industrial sites is analyzed. Finally, the elements’ ability to improve the spatial quality of an urban area is assessed. The above purpose is achieved by analyzing the application of the New Urbanist planning tools by two urban regeneration projects at different levels of completion. The sites of the projects are the central areas of the French metropolis of Lyon and of the Polish city of Lodz.


1976 ◽  
Vol 15 (01) ◽  
pp. 36-42 ◽  
Author(s):  
J. Schlörer

From a statistical data bank containing only anonymous records, the records sometimes may be identified and then retrieved, as personal records, by on line dialogue. The risk mainly applies to statistical data sets representing populations, or samples with a high ratio n/N. On the other hand, access controls are unsatisfactory as a general means of protection for statistical data banks, which should be open to large user communities. A threat monitoring scheme is proposed, which will largely block the techniques for retrieval of complete records. If combined with additional measures (e.g., slight modifications of output), it may be expected to render, from a cost-benefit point of view, intrusion attempts by dialogue valueless, if not absolutely impossible. The bona fide user has to pay by some loss of information, but considerable flexibility in evaluation is retained. The proposal of controlled classification included in the scheme may also be useful for off line dialogue systems.


2012 ◽  
pp. 24-47
Author(s):  
V. Gimpelson ◽  
G. Monusova

Using different cross-country data sets and simple econometric techniques we study public attitudes towards the police. More positive attitudes are more likely to emerge in the countries that have better functioning democratic institutions, less prone to corruption but enjoy more transparent and accountable police activity. This has a stronger impact on the public opinion (trust and attitudes) than objective crime rates or density of policemen. Citizens tend to trust more in those (policemen) with whom they share common values and can have some control over. The latter is a function of democracy. In authoritarian countries — “police states” — this tendency may not work directly. When we move from semi-authoritarian countries to openly authoritarian ones the trust in the police measured by surveys can also rise. As a result, the trust appears to be U-shaped along the quality of government axis. This phenomenon can be explained with two simple facts. First, publicly spread information concerning police activity in authoritarian countries is strongly controlled; second, the police itself is better controlled by authoritarian regimes which are afraid of dangerous (for them) erosion of this institution.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document