scholarly journals Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

2016 ◽  
Vol 26 (8) ◽  
pp. 634-636 ◽  
Author(s):  
Mahmoud H. Ouda ◽  
Waleed Khalil ◽  
Khaled N. Salama
Keyword(s):  
Dc Power ◽  
Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Ngo Thanh Tung ◽  
Nguyen Dinh Tuyen ◽  
Nguyen Minh Huy ◽  
Nguyen Hoai Phong ◽  
Ngo Cao Cuong ◽  
...  

This paper presents the implementation of a two-stage light-emitting diode (LED) driver based on commercial integrated circuits (IC). The presented LED driver circuit topology, which is designed to drive a 150 W LED module, consists of two stages: AC-DC power factor correction (PFC) stage and DC/DC power converter stage. The implementation of the PFC stage uses IC NCP1608, which uses the critical conduction mode to guarantee a unity input power factor with a wide range of input voltages. The DC/DC power converter with soft-switching characteristics for the entire load range uses IC FLS2100XS. Furthermore, the design of an electromagnetic interference (EMI) filter for the LED driver and the dimming control circuit are discussed in detail. The hardware prototype, an LED lighting system, with a rated power of 150 W/32 V from a nominal 220 V/50 Hz AC voltage supply was tested to show the effectiveness of the design. The presented LED driver was tested for street lighting, and the experimental results show that the power factor (PF) was higher than 0.97, the total harmonics distortion (THD) was lower than 7%, and the efficiency was 91.7% at full load. The results prove that the performance of the presented LED driver complies with the standards: IEC61000-3-2 and CIRSP 15:2009.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 731 ◽  
Author(s):  
Mircea Şuşcă ◽  
Vlad Mihaly ◽  
Mihai Stănese ◽  
Dora Morar ◽  
Petru Dobra

The current article presents the design, implementation, validation, and use of a Computer-Aided Control System Design (CACSD) toolbox for nonlinear and hybrid system uncertainty modeling, simulation, and control using μ synthesis. Remarkable features include generalization of classical system interconnection operations to nonlinear and hybrid systems, automatic computation of equilibrium points for nonlinear systems, and optimization of least conservative uncertainty bounds, with direct applicability for μ synthesis. A unified approach is presented for the step-down (buck), step-up (boost), and single-ended primary-inductor (SEPIC) converters to showcase the use and flexibility of the toolbox. Robust controllers were computed by minimization of the H∞ norm of the augmented performance systems, encompassing a wide range of uncertainty types, and have been designed using the well-known mixed-sensitivity closed loop shaping μ synthesis method.


2021 ◽  
Vol 11 (13) ◽  
pp. 5793
Author(s):  
Bartosz Dominikowski

The accuracy of current measurements can be increased by appropriate amplification of the signal to within the measurement range. Accurate current measurement is important for energy monitoring and in power converter control systems. Resistance and inductive current transducers are used to measure the major current in AC/DC power converters. The output value of the current transducer depends on the load motor, and changes across the whole measurement range. Modern current measurement circuits are equipped with operational amplifiers with constant or programmable gain. These circuits are not able to measure small input currents with high resolution. This article proposes a precise loop gain system that can be implemented with various algorithms. Computer analysis of various automatic gain control (AGC) systems proved the effectiveness of the Mamdani controller, which was implemented in an MCU (microprocessor). The proposed fuzzy controller continuously determines the value of the conversion factor. The system also enables high resolution measurements of the current emitted from small electric loads (≥1 A) when the electric motor is stationary.


Author(s):  
D. Tamilarasi ◽  
P. Ramesh ◽  
Raja Krishnamoorthy ◽  
C. Bharatiraja ◽  
T. Jayasankar

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Juan-Guillermo Muñoz ◽  
Fabiola Angulo ◽  
David Angulo-Garcia

The boost-flyback converter is a DC-DC step-up power converter with a wide range of technological applications. In this paper, we analyze the boost-flyback dynamics when controlled via a modified Zero-Average-Dynamics control technique, hereby named Zero-Average-Surface (ZAS). While using the ZAS strategy, it is possible to calculate the duty cycle at each PWM cycle that guarantees a desired stable period-1 solution, by forcing the system to evolve in such way that a function that is constructed with strategical combination of the states over the PWM period has a zero average. We show, by means of bifurcation diagrams, that the period-1 orbit coexists with a stable period-2 orbit with a saturated duty cycle. While using linear stability analysis, we demonstrate that the period-1 orbit is stable over a wide range of parameters and it loses stability at high gains and low loads via a period doubling bifurcation. Finally, we show that, under the right choice of parameters, the period-1 orbit controller with ZAS strategy satisfactorily rejects a wide range of disturbances.


Sign in / Sign up

Export Citation Format

Share Document