scholarly journals Design and Implementation of 150 W AC/DC LED Driver with Unity Power Factor, Low THD, and Dimming Capability

Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Ngo Thanh Tung ◽  
Nguyen Dinh Tuyen ◽  
Nguyen Minh Huy ◽  
Nguyen Hoai Phong ◽  
Ngo Cao Cuong ◽  
...  

This paper presents the implementation of a two-stage light-emitting diode (LED) driver based on commercial integrated circuits (IC). The presented LED driver circuit topology, which is designed to drive a 150 W LED module, consists of two stages: AC-DC power factor correction (PFC) stage and DC/DC power converter stage. The implementation of the PFC stage uses IC NCP1608, which uses the critical conduction mode to guarantee a unity input power factor with a wide range of input voltages. The DC/DC power converter with soft-switching characteristics for the entire load range uses IC FLS2100XS. Furthermore, the design of an electromagnetic interference (EMI) filter for the LED driver and the dimming control circuit are discussed in detail. The hardware prototype, an LED lighting system, with a rated power of 150 W/32 V from a nominal 220 V/50 Hz AC voltage supply was tested to show the effectiveness of the design. The presented LED driver was tested for street lighting, and the experimental results show that the power factor (PF) was higher than 0.97, the total harmonics distortion (THD) was lower than 7%, and the efficiency was 91.7% at full load. The results prove that the performance of the presented LED driver complies with the standards: IEC61000-3-2 and CIRSP 15:2009.

Author(s):  
Md. Shamsul Arifin ◽  
Mohammad Jahangir Alam

DC power supply has become the driving source for some essential modern applications. Thereby, DC power conditioning has become a significant issue for engineers. Typically used rectifiers associated with a bridge structure is nonlinear in nature. Thereby, the current at input side of the rectifier contains harmonics, which also flow through the power line. The presence of harmonics causes several interruptions and reduce power quality. In this regard, a new close loop SEPIC controlled rectifier is proposed in this paper. The conventional scheme is arranged with a rectifier connected to a DC-DC converter, which is an open loop system. Consequently, such system cannot regulate voltage at load varying condition. The proposed SEPIC controlled rectifier can regulate voltage under load varying condition for a wide range. Additionally, the performance in terms of total harmonic distortion (THD) of input current and power factor at AC side are also within satisfactory range for the closed loop configuration. The controlled rectifier has four operating phases associated with switching states and input voltage polarity. The close loop configuration also incorporates a current and a voltage loop at the feedback path. The comparative studies have been performed among the proposed closed loop construction, the open-loop structure as well as the conventional construction. The effectiveness of the proposed controlled rectifier is verified in terms of THD and input power factor considering the results obtained from simulation.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550072 ◽  
Author(s):  
Taiqiang Cao ◽  
Fang You ◽  
Fei Zhang ◽  
Ping Yang ◽  
Qian Luo ◽  
...  

Tri-state boost power factor correction (PFC) converter operating in pseudo-continuous-conduction mode (PCCM) is analyzed in this paper. The connection of power switch in parallel with inductor makes the boost converter operate in PCCM, which provides an additional degree of control freedom by inductor current freewheeling operation mode. Compared with boost PFC converter operating in continuous conduction mode (CCM) and discontinuous conduction mode (DCM), tri-state boost PFC converter extends the load range and is therefore more suitable for wide range of load variation. However, for universal input applications, the input power factor (PF) of the tri-state boost PFC converter is relatively low when the sinusoidal reference current control strategy is used. To improve the PF over the whole input voltage range, the input current and PF expressions of the tri-state boost PFC converter is derived and the non-sinusoidal reference current control strategy is proposed. A 400 W prototype of the tri-state boost PFC converter is built by using digital signal processing (DSP) as the controller. The experimental results verify the analysis results.


2016 ◽  
Vol 26 (8) ◽  
pp. 634-636 ◽  
Author(s):  
Mahmoud H. Ouda ◽  
Waleed Khalil ◽  
Khaled N. Salama
Keyword(s):  
Dc Power ◽  

2013 ◽  
Vol 14 (1) ◽  
pp. 33-40
Author(s):  
Ashish Shrivastava ◽  
Bhim Singh

Abstract This paper presents an improved power quality converter (IPQC)-based power supply design for high brightness light emitting diode (HB-LED) low power lighting. The IPQC circuit uses a Cuk buck-boost converter to operate it in a discontinuous conduction mode (DCM) using the voltage follower technique for the mitigation of harmonic contents present in the AC mains current. Subsequently, reduction in harmonic contents results in improving the power quality indices at the AC mains. Single-stage single switch converter topology is used, which has less component count, size and cost as compared to the two-stage converter topology. DCM operation has an advantage that only output voltage control loop is required as compared to three control loops required in the continuous conduction mode operation. An 18-W LED driver is designed, modeled and simulated using MATLAB/Simulink software for 220 V, 50 Hz AC mains. The performance of the proposed LED driver is observed in terms of total harmonic distortion of the input current (THDi), input power factor (PF) and crest factor (CF) taking into account the strict international standard of IEC 61000-3-2 for class C equipments.


2015 ◽  
Vol 16 (2) ◽  
pp. 181-193
Author(s):  
Swati Narula ◽  
Bhim Singh ◽  
G. Bhuvaneswari ◽  
Rahul Pandey

Abstract This paper presents the analysis, design and implementation of a power factor corrected Arc Welding Power Supply (AWPS) with a boost converter at the front end and three full-bridge (FB) converters connected in parallel at the load end. The modular arrangement of the FB converters offers several meritorious features like usage of power devices with comparatively lower voltage and current ratings, ease of power expandability, easy maintenance, etc. The boost converter operates in continuous conduction mode minimizing the input current ripple and leading to the lowest RMS current thereby improving the input power quality. Individual control loops are designed for each power stage. A dual loop control scheme is employed to incorporate over-current limit on the proposed AWPS which ensures excellent weld bead quality. The proposed AWPS is implemented to validate its performance over a wide range of line/load variations. Test results confirm its fast parametrical response to load and source voltage variations and over-current protection leading to improved welding performance and weld bead quality. The system is found to perform extremely well with very low input current THD and unity power factor, adhering to international power quality norms.


2019 ◽  
Vol 8 (3) ◽  
pp. 6916-6923

Power Factor Correction (PFC) units are used at the front end of Switched Mode Power Supply (SMPS) to improve the input power factor. However, they generate Electromagnetic Interference (EMI) which needs to be mitigated to compliant levels prescribed by International Standards. The Electromagnetic Compatibility (EMC) standards have set regulations which require expensive instruments and environment for their measurement. Hence there is a need for predicting Conducted EMI by simulation before the product is tested for full compliance to reduce the complexity of the circuit design and cost. To estimate the Conducted EMI, it is important to identify the main noise sources and their conduction paths. This can be achieved by simulating the circuit using the exact models of the transformer, capacitor, PCB trace, and the switching semiconductors. In this paper these components of PFC flyback converter are modelled using SPICE models, datasheet defined component parameters and experimental measurements. The theoretical analysis and simulation results show that the method discussed can predict and analyse the Conducted EMI. This is tested experimentally on a Flyback PFC converter working in Critical Conduction Mode. A line filter is designed and used to bring the noise to compliant levels. Simulation and Experimental results after using the line filter are also presented.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3312-3318

This paper shows the design of a single switch LED driver circuit which is based on the operation of boost converter and flyback converter with power factor correction. In the proposed driver circuit, the boost converter is made to operate in DCM mode for achieving a high power factor and the flyback converter is used for isolating the input-output in order to provide safety. In addition to this, a snubber circuit is also designed for clamping the peak voltage of the main switch into low voltage and also to recycle the leakage inductor energy. A capacitor of low-voltage rating is made to function as the DC bus capacitor due to reason that some amount of the input power is conducted directly towards the output side; the amount of power remaining is then stored in the DC bus capacitor. In this way, the proposed LED driver circuit provides a power factor of greater value, i.e., above 0.95 PF and also a high value of power conversion efficiency, i.e., above 90%.


2018 ◽  
pp. 63-68 ◽  
Author(s):  
Aniruddha Mukherjee ◽  
Trilok Chandra Bansal ◽  
Amit Soni

Light Emitting Diodes (LEDs) are fast replacing incandescent lamps and CFLs in most of the developing nations. The reason can be attributed mainly to the enhanced lifetime and less energy consumption as compared to the other mentioned types. However one important aspect needs attention, the impact of driver on LEDs. LEDs are current controlled devices and hence emit maximum light with increase in current input to the device. This feature, boost up the light output but it increases the junction temperature of the device. Hence additional heat sinks are required to vent out the excessive heat generated due to increase current input to the LEDs. Those additional heat sinks are at times difficult to accommodate. So, designers have made arrangements to vent out the heat from the device. This is achieved by designing fins. However this arrangement is not suitable in places where the ambient temperature is more than normal. Thus, design of LED driver with controlled current input is essential in order to maintain the thermal limit of the device. Secondly, the AC-DC LEDs driver circuits, which are available in the market, are seldom equipped with input power factor and THD improvement circuitry as prescribed in IEC61000– 3–2. This is essential for maintaining the energy efficiency of the nearest utility services and in addition also improves on the current drawn by the device. The following work envisages these issues and proposes corrective driver circuit based on two different driver topologies, buck-boost topology and flyback topology. Both these topologies are proposed in order to address the aspects of power quality and its impact on the life of the device. The simulation were done using Green Point simulation tool from On Semiconductors.


Sign in / Sign up

Export Citation Format

Share Document