Bidirectional Bias Response Ultraviolet Phototransistors with 4H-SiC NPN multi-layer Structure

Chenyue Sun ◽  
Hui Guo ◽  
Lei Yuan ◽  
Haohang Yang ◽  
Xiaoyan Tang ◽  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.

C. W. Allen ◽  
D. L. Kuruzar

The rare earth/transition element intermetallics R2T17 are essentially topologically close packed phases for which layer structure models have already been presented. Many of these compounds are known to undergo allotropic transformation of the type at elevated temperatures. It is not unexpected that shear transformation mechanisms are involved in view of the layering character of the structures. The transformations are evidently quite sluggish, illustrated in furnace cooled Dy2Co17 by the fact that only rarely has the low temperature rhombohedral form been seen. The more usual structures observed so far in furnace cooled alloys include 4H and 6H in Dy2Co17 (Figs. 1 and 2) . In any event it is quite clear that the general microstructure is very complicated as a consequence of the allotropy, illustrated in Fig. 3. Numerous planar defects in the layer plane orientation are evident as are non-layer plane defects inherited from a high temperature structure.

А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.

Galina Vasil’evna Troshina ◽  
Alexander Aleksandrovich Voevoda

It was suggested to use the system model working in real time for an iterative method of the parameter estimation. It gives the chance to select a suitable input signal, and also to carry out the setup of the object parameters. The object modeling for a case when the system isn't affected by the measurement noises, and also for a case when an object is under the gaussian noise was executed in the MatLab environment. The superposition of two meanders with different periods and single amplitude is used as an input signal. The model represents the three-layer structure in the MatLab environment. On the most upper layer there are units corresponding to the simulation of an input signal, directly the object, the unit of the noise simulation and the unit for the parameter estimation. The second and the third layers correspond to the simulation of the iterative method of the least squares. The diagrams of the input and the output signals in the absence of noise and in the presence of noise are shown. The results of parameter estimation of a static object are given. According to the results of modeling, the algorithm works well even in the presence of significant measurement noise. To verify the correctness of the work of an algorithm the auxiliary computations have been performed and the diagrams of the gain behavior amount which is used in the parameter estimation procedure have been constructed. The entry conditions which are necessary for the work of an iterative method of the least squares are specified. The understanding of this algorithm functioning principles is a basis for its subsequent use for the parameter estimation of the multi-channel dynamic objects.

AIAA Journal ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 405-409
Haibin Zhang ◽  
Shilin Gao ◽  
Bofeng Bai ◽  
Yechun Wang

Sign in / Sign up

Export Citation Format

Share Document