scholarly journals A Cerebellar Internal Models Control Architecture for Online Sensorimotor Adaptation of a Humanoid Robot Acting in a Dynamic Environment

2020 ◽  
Vol 5 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Marie Claire Capolei ◽  
Nils Axel Andersen ◽  
Henrik Hautop Lund ◽  
Egidio Falotico ◽  
Silvia Tolu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is a core function of the human visual system. Contemporary research suggests the brain builds predictive internal models of the world to facilitate interactions with our dynamic environment. Here, we wanted to examine the behavioural and neurological consequences of disrupting a core property of peoples’ internal models, using naturalistic stimuli. We had people view videos of basketball and asked them to track the moving ball and predict jump shot outcomes, all while we recorded eye movements and brain activity. To disrupt people’s predictive internal models, we inverted footage on half the trials, so dynamics were inconsistent with how movements should be shaped by gravity. When viewing upright videos people were better at predicting shot outcomes, at tracking the ball position, and they had enhanced alpha-band oscillatory activity in occipital brain regions. The advantage for predicting upright shot outcomes scaled with improvements in ball tracking and occipital alpha-band activity. Occipital alpha-band activity has been linked to selective attention and spatially-mapped inhibitions of visual brain activity. We propose that when people have a more accurate predictive model of the environment, they can more easily parse what is relevant, allowing them to better target irrelevant positions for suppression—resulting in both better predictive performance and in neural markers of inhibited information processing.


2013 ◽  
Vol 10 (03) ◽  
pp. 1350022 ◽  
Author(s):  
ALBERTUS HENDRAWAN ADIWAHONO ◽  
CHEE-MENG CHEW ◽  
BINGBING LIU

Push recovery is an important capability for a biped to safely maneuver in a real dynamic environment. In this paper, a generalized push recovery scheme to handle pushes from any direction that may occur at any walking phase is developed. Using the concept of walking phase modification, a series of systematic push recovery scheme that takes into account the severity of the push is presented. The result is that a bipedal robot could adapt to pushes according to the magnitude of disturbance and determine the best course of action. A number of push recovery experiments with different walking phases and push directions have been carried out using a 12-DOF humanoid robot model in dynamic simulations. The versatility and potential of the overall scheme is also demonstrated with the bipedal robot balancing on an accelerating cart.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anika Stockert ◽  
Michael Schwartze ◽  
David Poeppel ◽  
Alfred Anwander ◽  
Sonja Kotz

The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.


Author(s):  
Paul Erick Mendez Monroy

Push recovery is an essential requirement for a humanoid robot with the objective of safely performing tasks within a real dynamic environment. In this environment, the robot is susceptible to external disturbance that in some cases is inevitable, requiring push recovery strategies to avoid possible falls, damage in humans and the environment. In this paper, a novel push recovery approach to counteract disturbance from any direction and any walking phase is developed. It presents a pattern generator with the ability to be modified according to the push recovery strategy. The result is a humanoid robot that can maintain its balance in the presence of strong disturbance taking into account its magnitude and determining the best push recovery strategy. Push recovery experiments with different disturbance directions have been performed using a 20 DOF Darwin-OP robot. The adaptability and low computational cost of the whole scheme allows is incorporation into an embedded system.


Sign in / Sign up

Export Citation Format

Share Document