Computationally Efficient Trajectory Planning for High Speed Obstacle Avoidance of a Quadrotor With Active Sensing

2021 ◽  
Vol 6 (2) ◽  
pp. 3365-3372
Author(s):  
Gang Chen ◽  
Dongxiao Sun ◽  
Wei Dong ◽  
Xinjun Sheng ◽  
Xiangyang Zhu ◽  
...  
Author(s):  
Huckleberry Febbo ◽  
Paramsothy Jayakumar ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Abstract Safe trajectory planning for high-performance automated vehicles in an environment with both static and moving obstacles is a challenging problem. Part of the challenge is developing a formulation that can be solved in real-time while including the following set of specifications: minimum time-to-goal, a dynamic vehicle model, minimum control effort, both static and moving obstacle avoidance, simultaneous optimization of speed and steering, and a short execution horizon. This paper presents a nonlinear model predictive control-based trajectory planning formulation, tailored for a large, high-speed unmanned ground vehicle, that includes the above set of specifications. The ability to solve this formulation in real-time is evaluated using NLOptControl, an open-source, direct-collocation based, optimal control problem solver in conjunction with the KNITRO nonlinear programming problem solver. The formulation is tested with various sets of the specifications. A parametric study relating execution horizon and obstacle speed indicates that the moving obstacle avoidance specification is not needed for safety when the planner has a small execution horizon and the obstacles are moving slowly. However, a moving obstacle avoidance specification is needed when the obstacles are moving faster, and this specification improves the overall safety without, in most cases, increasing the solve-times. The results indicate that (i) safe trajectory planners for high-performance automated vehicles should include the entire set of specifications mentioned above, unless a static or low-speed environment permits a less comprehensive planner; and (ii) the resulting formulation can be solved in real-time.


Author(s):  
Cheng Liu ◽  
Guohua Cao ◽  
Yongyin Qu

This paper selects delta high-speed parallel robot with three degrees of freedom as the research object. The trajectory planning strategies of Cartesian space and angular displacement, angular velocity and angular acceleration of three joints in high-speed handling are studied. Firstly, the critical trajectory points starting point and end point, and points for obstacle avoidance height are set up, and then according to the inverse kinematics model of the robot, a point-to-point “door” type moving trajectory is established, and the mapping relationship between the motion characteristics of the operating space and the motion characteristics of the joint space is established by using the 4-3-4 degree polynomial motion law in the operating space. However, aiming at the higher energy consumption of 4-3-4 degree polynomial interpolation caused by longer the trajectory, and difficult control of obstacle avoidance height, one key point is added. Thereby, the motion rules are interpolated by 4-3-3-4 degree polynomial interpolation, and the mapping relationship between the motion characteristics of the operating space and the motion characteristics of the joint space is established. Two trajectory planning methods are simultaneously simulated under the same keys points and the same trajectory time range. The motion characteristics of the joint rotation angle of the parallel robot between polynomial interpolations are respectively compared. The results show that the trajectory planning method based on 4-3-3-4 degree polynomial interpolation in joint space has obvious advantages in improving the running state of the delta parallel robot and reducing the energy consumption of the system.


2019 ◽  
Vol 13 (2) ◽  
pp. 174-180
Author(s):  
Poonam Sharma ◽  
Ashwani Kumar Dubey ◽  
Ayush Goyal

Background: With the growing demand of image processing and the use of Digital Signal Processors (DSP), the efficiency of the Multipliers and Accumulators has become a bottleneck to get through. We revised a few patents on an Application Specific Instruction Set Processor (ASIP), where the design considerations are proposed for application-specific computing in an efficient way to enhance the throughput. Objective: The study aims to develop and analyze a computationally efficient method to optimize the speed performance of MAC. Methods: The work presented here proposes the design of an Application Specific Instruction Set Processor, exploiting a Multiplier Accumulator integrated as the dedicated hardware. This MAC is optimized for high-speed performance and is the application-specific part of the processor; here it can be the DSP block of an image processor while a 16-bit Reduced Instruction Set Computer (RISC) processor core gives the flexibility to the design for any computing. The design was emulated on a Xilinx Field Programmable Gate Array (FPGA) and tested for various real-time computing. Results: The synthesis of the hardware logic on FPGA tools gave the operating frequencies of the legacy methods and the proposed method, the simulation of the logic verified the functionality. Conclusion: With the proposed method, a significant improvement of 16% increase in throughput has been observed for 256 steps iterations of multiplier and accumulators on an 8-bit sample data. Such an improvement can help in reducing the computation time in many digital signal processing applications where multiplication and addition are done iteratively.


2021 ◽  
Author(s):  
Shuo Zhang ◽  
Shuo Shi ◽  
Tianming Feng ◽  
Xuemai Gu

Abstract Unmanned aerial vehicles (UAVs) have been widely used in communication systems due to excellent maneuverability and mobility. The ultra-high speed, ultra-low latency, and ultra-high reliability of 5th generation wireless systems (5G) have further promoted vigorous development of UAVs. Compared with traditional means of communication, UAV can provide services for ground terminal without time and space constraints, so it is often used as air base station (BS). Especially in emergency communications and rescue, it provides temporary communication signal coverage service for disaster areas. In the face of large-scale and scattered user coverage tasks, UAV's trajectory is an important factor affecting its energy consumption and communication performance. In this paper, we consider a UAV emergency communication network where UAV aims to achieve complete coverage of potential underlying D2D users (DUs). The trajectory planning problem is transformed into the deployment and connection problem of stop points (SPs). Aiming at trajectory length and sum throughput, two trajectory planning algorithms based on K-means are proposed. Due to the non-convexity of sum throughput optimization, we present a sub-optimal solution by using the successive convex approximation (SCA) method. In order to balance the relationship between trajectory length and sum throughput, we propose a joint evaluation index which is used as an objective function to further optimize trajectory. Simulation results show the validity of the proposed algorithms which have advantages over the well-known benchmark scheme in terms of trajectory length and sum throughput.


Author(s):  
Juan-Bautista Tomas-Gabarron ◽  
Felipe Garcia-Sanchez ◽  
Antonio-Javier Garcia-Sanchez ◽  
Joan Garcia-Haro

Sign in / Sign up

Export Citation Format

Share Document