Designing a low cost, low noise programmable gain instrumentation amplifier

Author(s):  
M. Di Ciano ◽  
R. Tangorra ◽  
C. Marzocca
2014 ◽  
Vol 530-531 ◽  
pp. 217-220
Author(s):  
Hwang Cherng Chow ◽  
Bing Shiun Tang

In this paper, a high performance current-mode instrumentation amplifier has been proposed with low noise, low power and high CMRR features. The proposed design can adjust the gain with an external resistor for the processing of various biomedical signals. To reduce the noise of the amplifier, two design methods including PMOS input and lateral pnp BJT input have been implemented to improve the prior arts. To meet the single power supply need, a biomedical voltage level shifter is also proposed for low cost CMOS implementation. Based on the post-layout simulation results, the presented current-mode amplifier achieves high CMRR over 120 dB, power consumption of 61 uW at 1.8-V supply using standard 0.18-um CMOS technology.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1157 ◽  
Author(s):  
Robert Chebli ◽  
Mohamed Ali ◽  
Mohamad Sawan

We present in this paper a fully integrated low-noise high common-mode rejection ratio (CMRR) logarithmic programmable gain amplifier (LPGA) and chopped LPGA circuits for EEG acquisition systems. The proposed LPGA is based on a rail-to-rail true logarithmic amplifier (TLA) stage. The high CMRR achieved in this work is a result of cascading three amplification stages to construct the LPGA in addition to the lower common-mode gain of the proposed logarithmic amplification topology. In addition, the 1 / f noise and the inherent DC offset voltage of the input transistors are reduced using a chopper stabilization technique. The CMOS 180 nm standard technology is used to implement the circuits. Experimental results for the integrated LPGA show a CMRR of 140 dB, a differential gain of 37 dB, an input-referred noise of 0.754 μ Vrms, a 189 μ W power consumption from 1.8 V power supply and occupies an active area of 0.4 mm 2 .


2020 ◽  
Vol 87 (s1) ◽  
pp. s79-s84
Author(s):  
Qummar Zaman ◽  
Senan Alraho ◽  
Andreas König

AbstractThe conventional method for testing the performance of reconfigurable sensory electronics of industry 4.0 relies on the direct measurement methods. This approach gives higher accuracy but at the price of extremely high testing cost and does not utilize the new degrees of freedom for measurement methods enabled by industry 4.0. In order to reduce the test cost and use available resources more efficiently, a primary approach, called indirect measurements or alternative testing has been proposed using a non-intrusive sensor. Its basic principle consists in using the indirect measurements, in order to estimate the sensory electronics performance parameters without measuring directly. The non-intrusive property of the proposed method offers better performance of the sensing electronics and virtually applicable to any sensing electronics. Efficiency is evaluated in terms of model accuracy by using six different classical metrics. It uses an indirect current-feedback instrumentation amplifier (InAmp) as a test vehicle to evaluate the performance parameters of the circuit. The device is implemented using CMOS 0.35 μm technology. The achieved maximum value of average expected error metrics is 0.24, and the lowest value of correlation performance metrics is 0.91, which represent an excellent efficiency of InAmp performance predictor.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000146-000153 ◽  
Author(s):  
Bruce W. Ohme ◽  
Mark R. Larson ◽  
Bhal Tulpule ◽  
Alireza Behbahani

Analog functions have been implemented in a Silicon-on-Insulator (SOI) process optimized for high-temperature (>225°C) operation. These include a linear regulator/reference block that supports input voltages up to 50V and provides multiple independent voltage outputs. Additional blocks provide configurable sensor excitation levels of up to 10V DC and/or 20V AC-differential, with current limiting and monitoring. A dual-channel Programmable-Gain-Instrumentation Amplifier (PGIA) and a high-level AC input block with programmable gain and offset serve signal conditioning, gain, and scaling needs. A multiplexer and analog buffer provide an output that is scaled and centered for down-stream A-to-D conversion. Limited component availability and high component counts deter development of sensing and control electronics for extreme temperature (>200°) applications. Systems require front-end power conditioning, sensor excitation and monitoring, response amplification, scaling, and multiplexing. Back-end Analog-to-Digital conversion and digital processing/control can be implemented using one or two integrated circuit chips, whereas the front-end functions require component counts in the dozens. The low level of integration in the available portfolio of SOI devices results in high component count when constructing signal conditioning interfaces for aerospace sensors. These include quasi-DC sensors such as thermo-couples, strain-gauges, bridge transducers as well as AC-coupled sensors and position transducers, such as Linear Variable Differential Transducers (LVDT's). Furthermore, a majority of sensor applications are best served by excitation/response voltage ranges that typically exceed the voltage range of digital electronics (either 5V or 3.3V in currently available digital IC's for use above 200°C). These constraints led Embedded Systems LLC to design a generic device which was implemented by Honeywell as an analog ASIC (Application Specific Integrated Circuit). This paper will describe the ASIC block-level capabilities in the context of the typical applications and present characterization data from wafer-level testing at the target temperature range (225C). This material is based upon work performed by Honeywell International under a subcontract from Embedded Systems LLC, funding for which was provided by the U.S. Air Force Small Business Innovative Research program.


Author(s):  
Qian lin ◽  
Haifeng Wu ◽  
Yi-Jun Chen ◽  
Liu-Lin Hu ◽  
Xiao-Ming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document