Piezoelectric composites for micro-ultrasonic transducers realized with deep-etch X-ray lithography

Author(s):  
Y. Hirata ◽  
H. Okuyama ◽  
S. Ogino ◽  
T. Numazawa ◽  
H. Takada
1988 ◽  
Vol 77 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Karl F. Schoch ◽  
Deborah P. Partlow ◽  
Robert F. Krause

2005 ◽  
Vol 892 ◽  
Author(s):  
Qianghua Wang ◽  
Jianzeng Xu ◽  
Changhe Huang ◽  
Gregory W Auner

AbstractThis paper reports the fabrication and characterization of micromachined ultrasonic transducers (MUT) based on piezoelectric aluminum nitride (AlN) thin films. The MUT device is composed of an Al/AlN/Al sandwiched structure overlaid on top of a silicon (Si) diaphragm. X-ray diffraction (XRD) scan shows that highly c-axis oriented AlN (002) thin films have been grown on Al/Si(100) substrates. Electrical impedance of the MUT devices is analyzed as a function of frequency. The fundamental resonant frequencies of the devices are found in the range of 65-70 kHz, which are in approximation to the theoretical calculation. The effective coupling factors of the devices are also derived as 0.18.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4078 ◽  
Author(s):  
Jian Cheng ◽  
Yan Chen ◽  
Jun-Wei Wu ◽  
Xuan-Rong Ji ◽  
Shang-Hua Wu

BaTiO3 (BTO) ceramics were fabricated based on stereolithography technology. The microstructures and electric properties of the BTO ceramics were studied. X-ray patterns of sintered BTO ceramics indicated that the tetragonal phase had formed, and the grain size increased clearly as BTO weight percentage increased. Moreover, the BTO ceramics exhibited good electric properties, with a piezoelectric constant d33 of 166 pC/N at 80% BTO weight percentage. To evaluate the properties of 3D printed BTO ceramics, a 1.4 MHz focused ultrasonic array was fabricated and characterized. The −6dB bandwidth of the array was 40%, and the insertion loss at the center frequency was 50 dB. The results show that the printed BTO ceramics array have good potential to be used in ultrasonic transducers for various applications.


Author(s):  
Tiffany Tran ◽  
Pratik Samant ◽  
Liangzhong Xiang ◽  
Yingtao Liu

Abstract For decades, aircraft disasters have always been a concern for airline companies and especially for consumers. Scientists all over the world have been constantly trying to study, discover and invent new methods for testing and prevention to reduce future aircraft accidents. One of those methods is non-destructive testing, which is a widely adaptive process for analyzing structural integrity over wide arrays of object. X-rays, ultrasound and computed tomography (CT) are non-destructive testing applications commonly used for the commercial aircraft maintenance. These non-destructive testing methods for aircraft structures give us high-quality images of structural damage but, there are some disadvantages related to resolution and the contrast mechanism of the image. The goal of this study is to demonstrate the concept of X-Ray Induced Acoustic Computed Tomography (XACT) imaging method for defect detection and localization through simulations using k-wave MATLAB toolbox. XACT is a technique based on the X-ray induced acoustic effect. In XACT, a short pulsed of X-rays are required to achieve thermal response and generate acoustic waves. X-ray travels to an object, the photons are absorbed causing the temperature in the object to raise, which generates acoustic waves due to thermoelastic expansion. These acoustic waves are then detected by ultrasonic transducers. Within the fuselage of the aircraft, the aircraft’s stiffener is designed using SolidWorks. along with two different types of defects through voids due to manufacturing imperfection process. As well as, cracks in the surface of the model due to mechanical failures are created in MATLAB. Two properties of Aluminum 6065 and Inconel 625 materials were selected for our simulation study since it is often used for the fuselage and/or aircraft engines. XACT images are generated under the combination of high X-ray absorption and ultrasonic transducers that will be able to overcome the disadvantages of the X-ray imaging technique and ultrasound imaging technique in image resolution and contrast mechanisms. The results from this simulation study demonstrate that the XACT method not only gives us high-resolution images but moreover, higher contrast of images that also allows us to detect position accuracy of the cons created.


1994 ◽  
Vol 360 ◽  
Author(s):  
Zhiqiang Zhuang ◽  
G.A. Kulesha ◽  
H. Du ◽  
B. Gallois

AbstractCalcium-doped lead titanate ceramics exhibiting piezoelectric anisotropy were fabricated for applications in ultrasonic transducers, infrared detectors and surface acoustic wave devices. Transmission electron microscopy and X-ray diffraction techniques were used to characterize the development of the piezoelectric anisotropy and the dependence of the piezoelectric anisotropy on microstructure. Electron diffraction patterns indicated that most of the ferroelectric domains in samples with [CaA] up to 30 mole% were 90° domains. The size of the ferroelectric domains was not related to piezoelectric anisotropy. Ferroelectric domains could not be detected above this concentration. Measurements of the temperature dependence of dielectric properties at different frequencies did not show any ferroelectric relaxor behavior.


1992 ◽  
Vol 133 (1) ◽  
pp. 21-26 ◽  
Author(s):  
K. Lubitz ◽  
A. Wolff ◽  
G. Preu ◽  
R. Stoll ◽  
B. Schulmeyer

2011 ◽  
Vol 1325 ◽  
Author(s):  
Veronica Corral-Flores ◽  
Dario Bueno-Baqués ◽  
Ronald F Ziolo

ABSTRACTHybrid piezoelectric composites were obtained by embedding barium titanate (BTO) nanofibers into a polyvinylidene fluoride (PVDF) matrix. Green BTO fibers were obtained by electrospinning a precursor polymeric solution under an electric field of 1 kV/cm. A network of non-woven ceramic BTO fibers was obtained after calcination of the green fibers. A PVDF solution was deposited over the ceramic fibers by spin-coating and then subjected to a low temperature heat treatment, to evaporate the solvent and promote the crystallization of the polar beta phase of PVDF.In average, the diameter of the ceramic fibers ranged from 105 to 225 nm, presenting ribbon-like shape in some cases. Crystalline phases of BTO and PVDF were confirmed by X-ray diffraction and infrared spectroscopy, respectively. Polarization hysteresis curves revealed a ferroelectric behavior in all samples.


Sign in / Sign up

Export Citation Format

Share Document