DPHA: A Novel MAC Protocol to Enhance Network Capacity in Non-Infrastructure WLANs

Author(s):  
Di. Wu ◽  
Guangxi. Zhu ◽  
Gan. Liu
2013 ◽  
Vol 470 ◽  
pp. 611-616
Author(s):  
Xuan Jie Ning ◽  
Hai Zhao ◽  
Mao Fan Yang ◽  
Dan Wu

This paper is concerned with the capacity of ad hoc networks employing pure ALOHA medium access control (MAC) protocol under the effect of different transmission power levels and variable data rate control. The data rate of a certain link is related to the signal to interference plus noise ratio (SINR), and SINR is, in turn, related to the transmitted power and link distance. The increasing power conducts a high data rate, resulting in the high interference of networks. Consequently, the optimum power that yields maximum network throughput is a tradeoff between transmission rate and network interference. Mathematical model analysis for the ad hoc network capacity are presented in the paper. A revised expression to the approximate calculating of the capture probability in networks is proposed.


2021 ◽  
Author(s):  
Khalid Abdel Hafeez

The increase number of vehicles on roads and the immense number of fatal accidents they cause have driven the research and development of new generation technologies to help drivers travel more safely. One major cause of traffic accidents is that drivers cannot consistently respond to the changing road conditions appropriately. In fact, most accidents could be avoided if drivers could obtain and use relevant information of the traffic that is beyond their vision using wireless communications technology. Recently, the IEEE community adopted the IEEE 802.11p standard as a main technology for VANETs. To test the feasibility of this technology, most researchers use simulations to evaluate its new applications and protocols due to the prohibitive cost of implementing real VANET setup. Therefore, we first analyze VANET’s wireless channel analytically and by simulations to predict its most appropriate propagation model and the communication range that minimizes the impact of the hidden terminal problem. Second, we derive a new mobility model that takes into account the vehicle’s follow-on safety rule, to accurately derive the relationship between vehicle’s speed and network density. It is expected that broadcasting and multi hop communications will be dominant in VANETs safety applications and protocols. Therefore, a Network Topology p-Persistence (NTPP) scheme is proposed to alleviate the impact of the broadcast storm problem. NTPP is based on vehicles’ knowledge of their neighbors in their range and traffic parameters to reduce the channel contention, redundant re-broadcasts and message travel time and to increase the emergency message reception rate. We analyze the reliability of the IEEE 802.11p in VANETs safety and warning applications scope taking into consideration different factors. It is shown analytically and by extensive simulations that the current DSRC specifications may lead to undesirable performance under harsh vehicular environments. Therefore, a novel Distributed Multichannel and Mobility Aware Cluster-based MAC Protocol (DMCMAC) is proposed to alleviate the impact of the hidden terminal problem, increase the network capacity and reliability. Cluster heads in DMCMAC are elected and re-elected in a distributed manner according to their relative speed and distance from their cluster members. The high stability of DMCMAC results from its adaptability to drivers’ behavior on the road and its learning process to predict the future speed and position of all cluster members using the fuzzy logic inference system. The reliability of DMCMAC is analyzed and compared with other protocols. It is shown by simulations that DMCMAC has high stability, its performance exceeds other protocols and can achieve a timely and reliable delivery of emergency messages to their intended recipients which make it more suitable for VANETs. iv


2013 ◽  
Vol 330 ◽  
pp. 1036-1040
Author(s):  
Zhao Ran He ◽  
Hai Bin Shi

Directional antenna has tremendous potential in improving the network capacity and anti-jamming compared with omni-directional antenna for ad hoc networks. In this article, a novel MAC protocol called TDPA based on TDMA was presented for ad hoc networks with directional antenna. It improved the spatial reuse by adaptively selecting interference-free angle according to communicating nodes positions, and increased the network throughput and broadcasting efficiency by piggyback retransmission technique. Analysis and simulation results showed that it can significantly improve network performance.


2021 ◽  
Author(s):  
Khalid Abdel Hafeez

The increase number of vehicles on roads and the immense number of fatal accidents they cause have driven the research and development of new generation technologies to help drivers travel more safely. One major cause of traffic accidents is that drivers cannot consistently respond to the changing road conditions appropriately. In fact, most accidents could be avoided if drivers could obtain and use relevant information of the traffic that is beyond their vision using wireless communications technology. Recently, the IEEE community adopted the IEEE 802.11p standard as a main technology for VANETs. To test the feasibility of this technology, most researchers use simulations to evaluate its new applications and protocols due to the prohibitive cost of implementing real VANET setup. Therefore, we first analyze VANET’s wireless channel analytically and by simulations to predict its most appropriate propagation model and the communication range that minimizes the impact of the hidden terminal problem. Second, we derive a new mobility model that takes into account the vehicle’s follow-on safety rule, to accurately derive the relationship between vehicle’s speed and network density. It is expected that broadcasting and multi hop communications will be dominant in VANETs safety applications and protocols. Therefore, a Network Topology p-Persistence (NTPP) scheme is proposed to alleviate the impact of the broadcast storm problem. NTPP is based on vehicles’ knowledge of their neighbors in their range and traffic parameters to reduce the channel contention, redundant re-broadcasts and message travel time and to increase the emergency message reception rate. We analyze the reliability of the IEEE 802.11p in VANETs safety and warning applications scope taking into consideration different factors. It is shown analytically and by extensive simulations that the current DSRC specifications may lead to undesirable performance under harsh vehicular environments. Therefore, a novel Distributed Multichannel and Mobility Aware Cluster-based MAC Protocol (DMCMAC) is proposed to alleviate the impact of the hidden terminal problem, increase the network capacity and reliability. Cluster heads in DMCMAC are elected and re-elected in a distributed manner according to their relative speed and distance from their cluster members. The high stability of DMCMAC results from its adaptability to drivers’ behavior on the road and its learning process to predict the future speed and position of all cluster members using the fuzzy logic inference system. The reliability of DMCMAC is analyzed and compared with other protocols. It is shown by simulations that DMCMAC has high stability, its performance exceeds other protocols and can achieve a timely and reliable delivery of emergency messages to their intended recipients which make it more suitable for VANETs. iv


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document