1.9 GHz/5.8 GHz-band on-chip matching Si-MMIC low noise amplifiers fabricated on high resistive Si substrate

Author(s):  
M. Ono ◽  
N. Suematsu ◽  
S. Kubo ◽  
Y. Iyama ◽  
T. Takagi ◽  
...  
2011 ◽  
Vol 20 (07) ◽  
pp. 1231-1242 ◽  
Author(s):  
J. DEL PINO ◽  
SUNIL L. KHEMCHANDANI ◽  
ROBERTO DÍAZ-ORTEGA ◽  
R. PULIDO ◽  
H. GARCÍA-VÁZQUEZ

In this work, the influence of the inductor quality factor in wide band low noise amplifiers has been studied. Electromagnetic simulations have been used to model the integrated inductor broad band response. The influence of the quality factor on LNA performance of the inductors that compound the impedance matching networks, inductive degeneration and broadband load has been studied, obtaining design guidelines for optimizing the amplifier gain flatness. Using this guidelines, an LNA with wideband input matching, shunt-peaking load, and an output buffer was designed. Using Austria Mikro Systems BiCMOS 0.35 m process, a prototype has been fabricated achieving the following measured specifications: maximum gain of 12.5 dB at 3.4 GHz with a -3 dB bandwidth of 1.7–5.3 GHz, noise figure from 4.3 to 5.2 dB, and unity gain at 9.4 GHz.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Goran Stojanović ◽  
Milan Radovanović ◽  
Vasa Radonić

Silicon-based radio-frequency integrated circuits are becoming more and more competitive in wide-band frequency range. An essential component of these ICs is on-chip (integrated) transformer. It is widely used in mobile communications, microwave integrated circuits, low-noise amplifiers, active mixers, and baluns. This paper deals with the design, simulation, and analysis of novel fractal configurations of the primary and secondary coils of the integrated transformers. Integrated stacked transformers, which use fractal curves (Hilbert, Peano, and von Koch) to form the primary and secondary windings, are presented. In this way, the occupied area on the chip is lower and a number of lithographic processes are decreased. The performances of the proposed integrated transformers are investigated with electromagnetic simulations up to 20 GHz. The influence of the order of fractal curves and the width of conductive lines on the inductance and quality factor is also described.


2009 ◽  
Vol 7 ◽  
pp. 145-150 ◽  
Author(s):  
M. Isikhan ◽  
A. Richter

Abstract. This paper presents Low Noise Amplifier (LNA) versions designed for 1.575 GHz L1 Band Global Positioning System (GPS) applications. A 0.35 μm standard CMOS process is used for implementation of these design versions. Different versions are designed to compare the results, analyze some effects and optimize some critical performance criteria. On-chip inductors with different quality factors and a slight topology change are utilized to achieve this variety. It is proven through both on-wafer and on-PCB measurements that the LNA versions operate at a supply voltage range varying from 2.1 V to 3.6 V drawing a current of 10 mA and achieve a gain of 13 dB to 17 dB with a Noise Figure (NF) of 1.5 dB. Input referred 1 dB compression point (ICP) is measured as −5.5 dBm and −10 dBm for different versions.


2011 ◽  
Vol E94-C (10) ◽  
pp. 1698-1701
Author(s):  
Yang SUN ◽  
Chang-Jin JEONG ◽  
In-Young LEE ◽  
Sang-Gug LEE

Sign in / Sign up

Export Citation Format

Share Document