Mitigating the Impact of Component Variations on Narrow-Band Low Noise Amplifiers for System-on-Chip Applications

Author(s):  
Arthur Nieuwoudt ◽  
Tamer Ragheb ◽  
Yehia Massoud
2011 ◽  
Vol 20 (07) ◽  
pp. 1231-1242 ◽  
Author(s):  
J. DEL PINO ◽  
SUNIL L. KHEMCHANDANI ◽  
ROBERTO DÍAZ-ORTEGA ◽  
R. PULIDO ◽  
H. GARCÍA-VÁZQUEZ

In this work, the influence of the inductor quality factor in wide band low noise amplifiers has been studied. Electromagnetic simulations have been used to model the integrated inductor broad band response. The influence of the quality factor on LNA performance of the inductors that compound the impedance matching networks, inductive degeneration and broadband load has been studied, obtaining design guidelines for optimizing the amplifier gain flatness. Using this guidelines, an LNA with wideband input matching, shunt-peaking load, and an output buffer was designed. Using Austria Mikro Systems BiCMOS 0.35 m process, a prototype has been fabricated achieving the following measured specifications: maximum gain of 12.5 dB at 3.4 GHz with a -3 dB bandwidth of 1.7–5.3 GHz, noise figure from 4.3 to 5.2 dB, and unity gain at 9.4 GHz.


2011 ◽  
Vol 62 (2) ◽  
pp. 80-86
Author(s):  
Franc Novak ◽  
Peter Mrak ◽  
Anton Biasizzo

Measuring Static Parameters of Embedded ADC CoreThe paper presents the results of a feasibility study of measuring static parameters of ADC cores embedded in a System-on-Chip. Histogram based technique is employed because it is suitable for built-in self-test. While the theoretical background of the technique has been covered by numerous papers, less attention has been given to implementations in practice. Our goal was the implementation of histogram test in a IEEE Std 1500 wrapper. Two different solutions pursuing either minimal test time or minimal hardware overhead are described. The impact of MOS switches at ADC input on the performed measurements was considered.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Goran Stojanović ◽  
Milan Radovanović ◽  
Vasa Radonić

Silicon-based radio-frequency integrated circuits are becoming more and more competitive in wide-band frequency range. An essential component of these ICs is on-chip (integrated) transformer. It is widely used in mobile communications, microwave integrated circuits, low-noise amplifiers, active mixers, and baluns. This paper deals with the design, simulation, and analysis of novel fractal configurations of the primary and secondary coils of the integrated transformers. Integrated stacked transformers, which use fractal curves (Hilbert, Peano, and von Koch) to form the primary and secondary windings, are presented. In this way, the occupied area on the chip is lower and a number of lithographic processes are decreased. The performances of the proposed integrated transformers are investigated with electromagnetic simulations up to 20 GHz. The influence of the order of fractal curves and the width of conductive lines on the inductance and quality factor is also described.


Sign in / Sign up

Export Citation Format

Share Document