Flash floods forecasting without rainfalls forecasts by recurrent neural networks. Case study on the Mialet basin (Southern France)

Author(s):  
G. Artigue ◽  
A. Johannet ◽  
V. Borrell ◽  
S. Pistre
2007 ◽  
Vol 22 (2) ◽  
pp. 229-241 ◽  
Author(s):  
Mohammad Karamouz ◽  
Saman Razavi ◽  
Shahab Araghinejad

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Meiyi Ma ◽  
John Stankovic ◽  
Ezio Bartocci ◽  
Lu Feng

Predictive monitoring—making predictions about future states and monitoring if the predicted states satisfy requirements—offers a promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather than sequential predictions. We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on whether all or some sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula. Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world CPS datasets and a simulated smart city case study, which show very encouraging results of STL-U based predictive monitoring approach outperforming baselines.


2009 ◽  
Vol 19 (02) ◽  
pp. 115-125 ◽  
Author(s):  
GHEORGHE PUSCASU ◽  
BOGDAN CODRES ◽  
ALEXANDRU STANCU ◽  
GABRIEL MURARIU

A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.


2015 ◽  
Vol 19 (10) ◽  
pp. 4397-4410 ◽  
Author(s):  
T. Darras ◽  
V. Borrell Estupina ◽  
L. Kong-A-Siou ◽  
B. Vayssade ◽  
A. Johannet ◽  
...  

Abstract. Flash floods pose significant hazards in urbanised zones and have important implications financially and for humans alike in both the present and future due to the likelihood that global climate change will exacerbate their consequences. It is thus of crucial importance to improve the models of these phenomena especially when they occur in heterogeneous and karst basins where they are difficult to describe physically. Toward this goal, this paper applies a recent methodology (Knowledge eXtraction (KnoX) methodology) dedicated to extracting knowledge from a neural network model to better determine the contributions and time responses of several well-identified geographic zones of an aquifer. To assess the interest of this methodology, a case study was conducted in southern France: the Lez hydrosystem whose river crosses the conurbation of Montpellier (400 000 inhabitants). Rainfall contributions and time transfers were estimated and analysed in four geologically delimited zones to estimate the sensitivity of flash floods to water coming from the surface or karst. The Causse de Viols-le-Fort is shown to be the main contributor to flash floods and the delay between surface and underground flooding is estimated to be 3 h. This study will thus help operational flood warning services to better characterise critical rainfall and develop measurements to design efficient flood forecasting models. This generic method can be applied to any basin with sufficient rainfall–run-off measurements.


RENOTE ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 215-224
Author(s):  
Jeferson Oliveira ◽  
Regina Barwaldt ◽  
Luiz Oscar Homann de Topin ◽  
Joelson Sartori

This survey features an intelligent IBM Watson chatbot to improve student participation in Moodle. Recurrent Neural Networks were used to generate a model and classify the intentions of 48 students who interacted with the assistant. A neural network was trained and submitted to the evaluation criteria and obtained 99.80% precision tests. The virtual assistant also demonstrated the ability to collaborate in student service activities. Infrequently asked questions about the use of Moodle. This study showed evidence that it is feasible to implement the chatbot to help with doubts in these contexts.


2015 ◽  
Vol 12 (4) ◽  
pp. 3681-3718
Author(s):  
T. Darras ◽  
V. Borrell Estupina ◽  
L. Kong-A-Siou ◽  
B. Vayssade ◽  
A. Johannet ◽  
...  

Abstract. Flash floods pose significant hazards in urbanised zones and have important human and financial implications in both the present and future due to the likelihood that global climate change will exacerbate their consequences. It is thus of crucial importance to better model these phenomena especially when they occur in heterogeneous and karst basins where they are difficult to describe physically. Toward this goal, this paper applies a recent methodology (KnoX methodology) dedicated to extracting knowledge from a neural network model to better determine the contributions and time responses of several well-identified geographic zones of an aquifer. To assess the interest of this methodology, a case study was conducted in Southern France: the Lez hydrosystem whose river crosses the conurbation of Montpellier (400 000 inhabitants). Rainfall contributions and time transfers were estimated and analysed in four geologically-delimited zones to estimate the sensitivity of flash floods to water coming from the surface or karst. The Causse de Viol-le-Fort is shown to be the main contributor to flash floods and the delay between surface and underground flooding is estimated to be three hours. This study will thus help operational flood warning services to better characterise critical rainfall and develop measurements to design efficient flood forecasting models. This generic method can be applied to any basin with sufficient rainfall–runoff measurements.


2021 ◽  
Vol 22 ◽  
pp. 10
Author(s):  
Shakti P. Jena ◽  
Dayal R. Parhi

Parameters identification on structure subjected to moving load can be predicted by using the accurate and reliable data. The concepts of recurrent neural networks (RNNs) approach have been used in parameters (crack locations and severities) identifications in structure subjected to moving load in the present methodology. This methodology has incorporated the knowledge based Elman's recurrent neural networks (ERNNs) and Jordan's recurrent neural networks (JRNNs) jointly for the identification of parameters. This approach has been addressed as the inverse problem for predicting the locations and quantification of cracks in the structure in a supervised manner. The Levenberg-Marquardt's back propagation algorithm is implemented to train the proposed networks. To check the robustness of the present method, Numerical studies followed by Finite Element Analysis (FEA) and experimental verifications (Forward problems) are presented as a case study by considering a multi-cracked simply supported structure under a moving mass. The estimated crack locations and severities obtained from the proposed RNNs model converge well with those of FEA and experiments. From the demonstration of the case study, it concludes that the proposed analogy can identify and quantify the crack locations and severities effectively.


Sign in / Sign up

Export Citation Format

Share Document