A wide-band low-noise charge amplifier with High Electron Mobility Transistor input stage

Author(s):  
G. Bertuccio ◽  
A. Pullia
Author(s):  
Pinku Ranjan ◽  
Swati Khandare

An oscillator is a vital component as the energy source in microwave telecommunication system. Microwave oscillators designed using Gunn diode have poor DC to RF efficiency. IMPact Ionization Avalanche Transit-Time diode (IMPATT) oscillators have the drawback of poor noise performance. The transistorized oscillators have a limitation to the maximum oscillation frequency which means that they cannot be used for oscillators designed for high frequencies. To design negative series feedback Dielectric Resonator Oscillator (DRO), the resonant unit uses a dielectric resonator (DR) since it is small in size, light in weight, has high-Quality ([Formula: see text]) factor, better stability and also it is inexpensive. It has the benefits of low-phase noise, low cost, miniaturization, high stability, applicable for devices designed at high frequencies and had already been widely applied, so the research on microwave dielectric oscillator has also been one of the focus of today’s microwave integrated circuits. DRO is widely used in electronic warfare, missile, radar and communication systems. The DRO incorporates High-Electron Mobility Transistor (HEMT) as an active device since it offers higher power-added efficiency combined with excellent low-noise figures and performance. The entire circuit of DRO using HEMT at 26[Formula: see text]GHz is designed using Agilent Advanced Design System (ADS) software. In this, DRO different measurements of parameters are done such as output power which is typically [Formula: see text][Formula: see text]dBm for 26[Formula: see text]GHz DRO, phase noise at 10[Formula: see text]kHz offset for 26[Formula: see text]GHz DRO it is 80[Formula: see text]dBc/Hz. The frequency pushing and frequency pulling for 26[Formula: see text]GHz DRO its typical values are 30[Formula: see text]kHz/V and 1[Formula: see text]MHz, respectively.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1599 ◽  
Author(s):  
Fabrizio Roccaforte ◽  
Giuseppe Greco ◽  
Patrick Fiorenza ◽  
Ferdinando Iucolano

Today, the introduction of wide band gap (WBG) semiconductors in power electronics has become mandatory to improve the energy efficiency of devices and modules and to reduce the overall electric power consumption in the world. Due to its excellent properties, gallium nitride (GaN) and related alloys (e.g., AlxGa1−xN) are promising semiconductors for the next generation of high-power and high-frequency devices. However, there are still several technological concerns hindering the complete exploitation of these materials. As an example, high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures are inherently normally-on devices. However, normally-off operation is often desired in many power electronics applications. This review paper will give a brief overview on some scientific and technological aspects related to the current normally-off GaN HEMTs technology. A special focus will be put on the p-GaN gate and on the recessed gate hybrid metal insulator semiconductor high electron mobility transistor (MISHEMT), discussing the role of the metal on the p-GaN gate and of the insulator in the recessed MISHEMT region. Finally, the advantages and disadvantages in the processing and performances of the most common technological solutions for normally-off GaN transistors will be summarized.


2004 ◽  
Vol 43 (No. 7A) ◽  
pp. L871-L872 ◽  
Author(s):  
Edward Yi Chang ◽  
Yueh-Chin Lin ◽  
Guan-Ji Chen ◽  
Huang-Ming Lee ◽  
Guo-Wei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document