Comparing different mechanical models for the evaluation of mechanical behavior of reuse in PVC electrosurgical pencils through their hardness and Young's Modulus relation

Author(s):  
S. Torres-Montoya ◽  
Y. Montoya-Goez ◽  
L. Tapias
2021 ◽  
Vol 138 (27) ◽  
pp. 50648 ◽  
Author(s):  
Roberto Yáñez‐Macías ◽  
Jorge E. Rivera‐Salinas ◽  
Silvia Solís‐Rosales ◽  
Daniel Orduña‐Altamirano ◽  
David Ruíz‐Mendoza ◽  
...  

2017 ◽  
Vol 19 (35) ◽  
pp. 23887-23897 ◽  
Author(s):  
Arzu Çolak ◽  
Jingjing Wei ◽  
Imad Arfaoui ◽  
Marie-Paule Pileni

The Young's modulus of three-dimensional self-assembled Ag nanocrystals, as so-called supracrystals, is correlated with the type of coating agent as well as the nanocrystal morphology.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Huiyang Luo ◽  
Chenkai Dai ◽  
Rong Z. Gan ◽  
Hongbing Lu

The mechanical behavior of human tympanic membrane (TM) has been investigated extensively under quasistatic loading conditions in the past. The results, however, are sparse for the mechanical properties (e.g., Young's modulus) of the TM at high strain rates, which are critical input for modeling the mechanical response under blast wave. The property data at high strain rates can also potentially be converted into complex modulus in frequency domain to model acoustic transmission in the human ear. In this study, we developed a new miniature split Hopkinson tension bar to investigate the mechanical behavior of human TM at high strain rates so that a force of up to half of a newton can be measured accurately under dynamic loading conditions. Young’s modulus of a normal human TM is reported as 45.2–58.9 MPa in the radial direction, and 34.1–56.8 MPa in the circumferential direction at strain rates 300–2000 s−1. The results indicate that Young’s modulus has a strong dependence on strain rate at these high strain rates.


2018 ◽  
Vol 29 (20) ◽  
pp. 205706 ◽  
Author(s):  
Mohammad Reza Zamani Kouhpanji ◽  
Mahmoud Behzadirad ◽  
Daniel Feezell ◽  
Tito Busani

2004 ◽  
Vol 19 (2) ◽  
pp. 454-459 ◽  
Author(s):  
I. Kaplan-Ashiri ◽  
S.R. Cohen ◽  
K. Gartsman ◽  
R. Rosentsveig ◽  
G. Seifert ◽  
...  

The Young's modulus of WS2 nanotubes is an important property for various applications. Measurements of the mechanical properties of individual nanotubes are challenged by their small size. In the current work, atomic force microscopy was used to determine the Young's modulus of an individual multiwall WS2 nanotube, which was mounted on a silicon cantilever. The buckling force was measured by pushing the nanotube against a mica surface. The average Young's modulus of an individual WS2 nanotube, which was calculated by using Euler's equation, was found to be 171 GPa. First-principle calculations of the Young's modulus of MoS2 single-wall nanotubes using density-functional–based tight-binding method resulted in a value (230 GPa) that is close to that of the bulk material. Furthermore, the diameter dependence of the Young's modulus in both zigzag and armchair configuration was studied and was found to approach the bulk value for nanotubes with few-nanometer diameters. Similar behavior is expected for WS2 nanotubes. The mechanical behavior of the WS2 nanotubes as atomic force microscope imaging tips gave further support for the measured Young's modulus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liang Zhao ◽  
Mahyuddin K. M. Nasution ◽  
Maboud Hekmatifar ◽  
Roozbeh Sabetvand ◽  
Pavel Kamenskov ◽  
...  

AbstractIn the present study, the improvement of mechanical properties of conventional concretes using carbon nanoparticles is investigated. More precisely, carbon nanotubes are added to a pristine concrete matrix, and the mechanical properties of the resulting structure are investigated using the molecular dynamics (MD) method. Some parameters such as the mechanical behavior of the concrete matrix structure, the validation of the computational method, and the mechanical behavior of the concrete matrix structure with carbon nanotube are also examined. Also, physical quantities such as a stress–strain diagram, Poisson's coefficient, Young's modulus, and final strength are calculated and reported for atomic samples under external tension. From a numerical point of view, the quantities of Young's modulus and final strength are converged to 35 GPa and 35.38 MPa after the completion of computer simulations. This indicates the appropriate effect of carbon nanotubes in improving the mechanical behavior of concrete and the efficiency of molecular dynamics method in expressing the mechanical behavior of atomic structures such as concrete, carbon nanotubes and composite structures derived from raw materials is expressed that can be considered in industrial and construction cases.


2021 ◽  
Vol 11 (23) ◽  
pp. 11437
Author(s):  
Davide Geremia ◽  
Christian David ◽  
Rachid Ismail ◽  
Alae El Haitami

We investigated the impact of water weakening on the mechanical behavior of Obourg Chalk and Ciply Chalk (Mons Basin, Belgium). Different mechanical tests were conducted to estimate the unconfined compressive strength (UCS), tensile strength, Young’s modulus, mechanical strength under triaxial loading, critical pressure, fracture toughness, cohesion, and internal friction coefficient on samples either dry or saturated with water or brine. This extensive dataset allowed us to calculate wet-to-dry ratios (WDR), i.e., the ratio between any property for a dry sample to that for the water-saturated sample. For both chalks, we found that water has a strong weakening effect with WDR ranging from 0.4 to 0.75. Ciply Chalk exhibits more water weakening than Obourg Chalk. The highest water weakening effect was obtained for UCS, critical pressure, and Young’s modulus. Weakening effects are still present in brine-saturated samples but their magnitude depends on the fluid composition. The mechanical data were correlated to variations in surface energy derived from three different methods: fracture mechanics, contact angle goniometry, and atomic force microscopy. Water weakening in the tested chalks can be explained by a clear reduction in surface energy and by the existence of repulsive forces which lower the cohesion.


1995 ◽  
Vol 4 (3) ◽  
pp. 096369359500400
Author(s):  
G. Hernández ◽  
R. Rodríguez ◽  
A. Maciel ◽  
M.V. García-Garduño ◽  
V.M. Castaño

Mechanical testing the behaviour of polybutadiene-cellulose diacetate (functionallized) was performed. The cellulose diacetate was chemically modified to improve the interfacial bonding between the components. The results indicate that the Young's modulus is increased substantially as the content of the functionallized component is increased. Finally, a comparison to theoretical mechanical models is shown.


2013 ◽  
Vol 290 ◽  
pp. 15-20
Author(s):  
Dong Mei Luo ◽  
Hong Yang ◽  
Qiu Yan Chen ◽  
Ying Long Zhou

In this paper, two kinds of micro-mechanical models are utilized to predict the effective Young's modulus for hybrid composites including fiber-like, spherical and needle inclusions in an isotropic matrix. The two models of Multi-Phase Mori-Tanaka Model (MP model) and Multi-Step Mori-Tanaka Model (MS model) are proposed by the authors in a series of interrelated research. The results show that the shape and the Young’s modulus of inclusion, aspect ratio of fiber-like inclusion are the controlling factors to influence the Young's modulus, and MP model is more rational to predict the effective Young’s modulus of hybrid composites reinforced with multi-shape inclusions.


2014 ◽  
Vol 104 (22) ◽  
pp. 223101 ◽  
Author(s):  
Jin-Xing Shi ◽  
Toshiaki Natsuki ◽  
Xiao-Wen Lei ◽  
Qing-Qing Ni

Sign in / Sign up

Export Citation Format

Share Document