A flexible low-cost photovoltaic solar panel emulation platform

Author(s):  
Antony Xenophontos ◽  
Jonathan Rarey ◽  
Anthony Trombetta ◽  
Ali M. Bazzi
Keyword(s):  
Low Cost ◽  
Author(s):  
Zhengwang Xu ◽  
Wei Mei ◽  
Jiaqi Yu ◽  
Jiarui Zhang ◽  
Yuchun Yi ◽  
...  

As being restricted by factors such as cost, efficiency and size, the development of high-power solar LED street light controller is faced with plenty of difficulties. In case that a structure of two independent DC/DC is applied as the main circuit, it has to face problems such as large size and high cost; in case of applying the bidirectional BUCK/BOOST circuit, it requires change-over switches to control the solar panel and LED light. As being restricted by withstanding voltage, on-resistance and cost, a PMOS device cannot be used as the change-over switch of solar panel and LED light. However, when being used as a change-over switch, an NMOS device must apply the low-side mode under which the negative ends of the mentioned three parts are cut off. In the condition of applying the low-side mode, a differential circuit must be used to detect the voltage of the solar panel. Furthermore, in order to make sure batteries can still be regularly charged after wearing out in daylight, the controller must be supplied with power through a dual power supply circuit that can obtain power from both the solar panel and the battery. The demander has a requirement on extremely low standby power consumption of the product, and thus it is necessary to minimize the circuit that is live while working in standby mode. Methods: The bidirectional BUCK/BOOST circuit structure is applied to the main circuit to realize a higher change-over efficiency while giving considerations to both cost and size. The NMOS device, model IRFB4410ZPBF, with a price of about three yuan, is used as the switching device, and the low-side mode is applied, that is the switches inserted in between negative end of the solar panel or LED light and that of the DC/DC circuit. The low-cost rail-to-rail operational amplifier LM358 is used to form a differential amplification circuit for detecting the voltage of the solar panel. A XL1509-12E1 chip that only costs 0.88 yuan/pc is selected as the main change-over chip for the power supply, which has realized the highly-efficient and low-cost change-over of the power supply. A dual power supply circuit and a step-down protective circuit are designed for the XL1509-12E1 change-over chip. By comparing solar panel voltage with battery voltage, the solar panel booting circuit is realized. Only when solar panel voltage is higher than battery voltage, does the system program start to power it up for running, so that the outage of most of the circuits of the system under standby mode does not consume energy. Furthermore, the solar panel voltage detecting circuit, the solar panel booting circuit and several return difference functions are corrected during system debugging. Results: The circuit board of the entire controller features small size, low cost and high efficiency. It measures about 100*62*18mm in size, costs about 60 yuan, and the charge/discharge change-over efficiency reaches up to over 95%. The controller has many functions: it is capable of operating within a large scope, in which, solar panel voltage is subject to 15~50V, LED light voltage is subject to 15~60V, battery voltage is subject to 10~35V and battery-end charge/discharge current is 10A; it is capable of adapting to monocrystalline silicon/multicrystalline silicon/thin-film and many other kinds of solar panels, as well as lithium/lead-acid and many other kinds of batteries; it is capable of detecting the conversion of day and night, automatically controlling charging and discharging and automatically making adaptive adjustment according to seasonal variations; the current to be consumed during standby will be maintained below 3mA, and thus the power consumption is extremely low. Conclusion: By selecting the bidirectional BUCK/BOOST circuit structure, applying low-side mode for switching of solar panel and LED light, using a differential circuit to detect solar panel voltage, using a low-cost DC/DC chip to realize power supply change-over, designing a dual power supply circuit, introducing solar panel booting circuit and other hardware design, as well as MPPT algorithm, state recognition and control, return difference control and other software design, a solar LED street light control product featuring small size, low cost, high efficiency and multiple functions is successfully developed.


Author(s):  
Olufunmilola Atilola ◽  
Joseph Goodman ◽  
Kathryn Nagel ◽  
Julie Linsey

Biologically inspired design is the process of using biological systems as analogues to develop innovative solutions for engineering problems. This paper describes an effective and successful implementation of problem-driven biologically inspired design in a real-world problem. In support of the Department of Energy SunShot Initiative, a national collaborative effort to make solar energy cost-competitive with other forms of electricity by the end of the decade, solar panel designs were carried out by engineering and architectural design teams. Solar Photovoltaic (PV) systems were developed using analogical design, and more specifically, bio-inspired design. Some systems were also designed using non-biological analogues. Functional decompositions were employed as the first step in the design process, as a way to identify the key functions essential to the system’s reliability and cost effectiveness. Six key functions were identified. Analysis of the final designs by the teams showed that the solar panel system designs using biologically inspired analogues were more effective in meeting the six key functions identified during functional decomposition. Employing a combination of divergent and convergent design thinking is also discussed as a way for effective biologically inspired design. The top three designs selected for prototyping were biologically inspired and exceeded the project goal of reducing the installation and labor costs of solar PV systems by 50%.


Author(s):  
Md Mizanur Rahman ◽  
◽  
Bidhan Chandra Nath ◽  
Subrato Paul ◽  
Md. Golam Kibria Bhuiyan ◽  
...  

This research intends to design, assemble and evaluate the performance of an eco-friendly solar light trap to reduce the insect population in rice fields as well as to minimize the use of harmful chemical pesticides. An AutoCAD drawing tool 2016 was used to sketch the design of solar light trap. The main component of this light trap was bulb, solar panel and battery. Design of solar panel and battery was done considering by 5W LED bulb. A total of five bulbs with different colors were selected to test the insect’s reaction by visible light. Study indicated that ultra violet-blue bulb showed the best performance compare to others based on the high percentage of insect trap (31.22%). A 20-watt solar panel and two 4.5 ah batteries of 6 volts were used to operate the solar light trap. The current, voltage, solar intensity was recorded to check overall performance of solar panel. The solar panel generated more power in April than May due to higher solar radiation in the study area. Study suggested that only 4.26 sunshine hours were required to full charge the battery. The solar light trap was operated 5.5 hour in night which was sufficient to reduce the insects in rice field. Moreover, the light sensor was showed 100% functional for ON/OFF purposes. The dominant insects like yellow stem borer (YSB), green leafhopper (GLH) were mostly observed. The average largest numbers of YSB and GLH were 900 and 600 respectively. In conclusion, the solar light trap is eco-friendly, low cost, easy and self-sufficient in term of solar energy. Finally, the newly developed light trap could be helpful for manufactures, decision makers, and engineering community as well as farmers as a best tool to protect nature in comparison to other pesticide using practices.


Author(s):  
Ezhilarasan S. ◽  
Gnanapragash S. ◽  
Ravielango A. ◽  
Gobinathan S.

This work introduces a development of scrolling LED notice board with self-generating power from built in solar panel for its working. The main advantage of the project is to get a major reduction in paper consumption and manpower. The messages can also be passed immediately without any delay. Scrolling LED display is used as it is low power and low cost. The led Display System is aimed at the colleges and universities for displaying day-to-day information continuously or at regular intervals during the working hours.


Author(s):  
Leah Kelley ◽  
Amy M. Bilton ◽  
Steven Dubowsky

Reverse osmosis (RO) is a well-known process for desalinating seawater and brackish groundwater. Desalination is energy-intensive, so using photovoltaic (PV) panels to power the process is an attractive and cost-effective concept, especially for community-scale systems. Increasing the system efficiency will lower the total cost of water produced, making the systems more economically competitive for a greater number of geographic locations. It is noted in this paper that the amount of water produced by a PV-powered RO (PVRO) system can be increased if the temperatures of the solar panel and the reverse osmosis feed water are actively managed. For a given level of solar radiation, a photovoltaic panel produces more power at a lower temperature. Also, for a given power, an RO system produces more clean water at a higher input (feed) water temperature. An active thermal management system is needed to exploit these complementary characteristics by cooling the solar panel and warming the RO feed water, increasing the amount of fresh water produced. This can be accomplished by running the RO feed water through a heat exchanger attached to the back of the solar panel, cooling it. Furthermore, the ability to cool the solar panels permits the addition of low-cost, flat-plate concentrating mirrors to be used with the PV panels, which further increases the PV power output. The flow of the water through the respective units must be actively controlled as there are limits for the maximum temperatures of both the RO water and PV panels. In this paper, a concept for an active PVRO thermal control system is presented. Simulations and experimental results show the effectiveness of this approach. In experiment, a 57% increase in fresh water production was achieved. These experimental results agree well with simulation models.


A solar panel emulator is a programmable power supply which mimics the characteristics of a solar panel and can be used under laboratory conditions. This paper proposes the design of an economical solar panel emulator using LabView software and its implementation using Arduino. The proposed emulator consists of a flyback converter with a MOSFET driver which brings out the characteristics of the desired PV panel. The characteristic curves are generated using LabView software and PWM signal is generated in hardware. This PWM signal drives the MOSFET which in turn operates the flyback converter. The proposed system is simulated using MATLAB software and a prototype of the proposed system is implemented using Arduino UNO R3.


Sign in / Sign up

Export Citation Format

Share Document