Data Augmentation Strategies for Human Activity Data Using Generative Adversarial Neural Networks

Author(s):  
Alexander Hoelzemann ◽  
Nimish Sorathiya ◽  
Kristof Van Laerhoven
2021 ◽  
Author(s):  
Sayan Nag

Self-supervised learning and pre-training strategies have developed over the last few years especially for Convolutional Neural Networks (CNNs). Recently application of such methods can also be noticed for Graph Neural Networks (GNNs). In this paper, we have used a graph based self-supervised learning strategy with different loss functions (Barlow Twins[? ], HSIC[? ], VICReg[? ]) which have shown promising results when applied with CNNs previously. We have also proposed a hybrid loss function combining the advantages of VICReg and HSIC and called it as VICRegHSIC. The performance of these aforementioned methods have been compared when applied to two different datasets namely MUTAG and PROTEINS. Moreover, the impact of different batch sizes, projector dimensions and data augmentation strategies have also been explored. The results are preliminary and we will be continuing to explore with other datasets.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1805
Author(s):  
Pedro Matias ◽  
Duarte Folgado ◽  
Hugo Gamboa ◽  
André Carreiro

Searching for characteristic patterns in time series is a topic addressed for decades by the research community. Conventional subsequence matching techniques usually rely on the definition of a target template pattern and a searching method for detecting similar patterns. However, the intrinsic variability of time series introduces changes in patterns, either morphologically and temporally, making such techniques not as accurate as desired. Intending to improve segmentation performances, in this paper, we proposed a Mask-based Neural Network (NN) which is capable of extracting desired patterns of interest from long time series, without using any predefined template. The proposed NN has been validated, alongside a subsequence matching algorithm, in two datasets: clinical (electrocardiogram) and human activity (inertial sensors). Moreover, the reduced dimension of the data in the latter dataset led to the application of transfer learning and data augmentation techniques to reach model convergence. The results have shown the proposed model achieved better segmentation performances than the baseline one, in both domains, reaching average Precision and Recall scores of 99.0% and 97.5% (clinical domain), along with 77.0% and 71.4% (human activity domain), introducing Neural Networks and Transfer Learning as promising alternatives for pattern searching in time series.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8444
Author(s):  
Jaehyeop Choi ◽  
Chaehyeon Lee ◽  
Donggyu Lee ◽  
Heechul Jung

Modern data augmentation strategies such as Cutout, Mixup, and CutMix, have achieved good performance in image recognition tasks. Particularly, the data augmentation approaches, such as Mixup and CutMix, that mix two images to generate a mixed training image, could generalize convolutional neural networks better than single image-based data augmentation approaches such as Cutout. We focus on the fact that the mixed image can improve generalization ability, and we wondered if it would be effective to apply it to a single image. Consequently, we propose a new data augmentation method to produce a self-mixed image based on a saliency map, called SalfMix. Furthermore, we combined SalfMix with state-of-the-art two images-based approaches, such as Mixup, SaliencyMix, and CutMix, to increase the performance, called HybridMix. The proposed SalfMix achieved better accuracies than Cutout, and HybridMix achieved state-of-the-art performance on three classification datasets: CIFAR-10, CIFAR-100, and TinyImageNet-200. Furthermore, HybridMix achieved the best accuracy in object detection tasks on the VOC dataset, in terms of mean average precision.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Sign in / Sign up

Export Citation Format

Share Document