Core losses estimation of high speed electrical machines based on corrections in epstein frame method data

Author(s):  
Wei-Ming Su ◽  
Shang-Hsun Mao ◽  
Pei-Jen Wang
2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1815
Author(s):  
Feng Fang ◽  
Diwen Hou ◽  
Zhilei Wang ◽  
Shangfeng Che ◽  
Yuanxiang Zhang ◽  
...  

Based on conventional hot rolling processes and strip casting processes, Cu precipitation strengthening is used to improve the strength of non-oriented silicon steel in order to meet the requirements of high-speed driving motors of electric vehicles. Microstructure evolution was studied, and the effects of Cu precipitates on magnetic and mechanical properties are discussed. Compared with conventional processes, non-oriented silicon steel prepared by strip casting exhibited advantages with regard to microstructure optimization with coarse grain and {100} texture. Two-stage rolling processes were more beneficial for uniform microstructure, coarse grains and improved texture. The high magnetic induction B50 of 1.762 T and low core losses with P1.5/50, P1.0/400 and P1.0/1000 of 1.93, 11.63 and 44.87 W/kg, respectively, were obtained in 0.20 mm sheets in strip casting. Cu precipitates significantly improved yield strength over ~120 MPa without deteriorating magnetic properties both in conventional process and strip casting. In the peak stage aged at 550 °C for 120 min, Cu precipitates retained bcc structure and were coherent with the matrix, and the yield strength of the 0.20 mm sheet was as high as 501 MPa in strip casting. The main mechanism of precipitation strengthening was attributed to coherency strengthening and modulus strengthening. The results indicated that balanced magnetic and mechanical properties can be achieved in thin-gauge non-oriented silicon steel with Cu addition in strip casting.


2019 ◽  
Vol 55 (5) ◽  
pp. 4900-4909
Author(s):  
Vito Giuseppe Monopoli ◽  
Pierluigi Sidella ◽  
Francesco Cupertino

2017 ◽  
Vol 53 (3) ◽  
pp. 2077-2087 ◽  
Author(s):  
Arda Tuysuz ◽  
Francesca Meyer ◽  
Mathis Steichen ◽  
Christof Zwyssig ◽  
Johann W. Kolar

Sign in / Sign up

Export Citation Format

Share Document