Comparison of Microinverters: Update on conversion efficiencies and energy yields

Author(s):  
Stefan Krauter ◽  
Jorg Bendfeld
2020 ◽  
Vol 8 (43) ◽  
pp. 15135-15141
Author(s):  
Jing Yan ◽  
Yuan-Qiu-Qiang Yi ◽  
Jianqi Zhang ◽  
Huanran Feng ◽  
Yanfeng Ma ◽  
...  

Two non-fullerene small molecule acceptors, NT-4F and NT-4Cl, were designed and synthesized. Power conversion efficiencies of 11.44% and 14.55% were achieved for NT-4Cl-based binary and ternary devices, respectively.


2002 ◽  
Vol 715 ◽  
Author(s):  
Wei Xu ◽  
P. C. Taylor

AbstractWe have made a series of a-SiSx:H based solar cells, with a pin structure, in a multichamber plasma enhanced chemical vapor deposition (PECVD) system. The sulfur concentration ranges from zero to 5 x 1018 cm-3 as measured by secondary ion mass spectroscopy. The initial conversion efficiencies of cells in this series with sulfur concentrations ≤ 1018 cm-3 are approximately 7%. The time constants for degradation increase with increasing sulfur concentration, but not fast enough to be of practical importance in photovoltaic devices.


Author(s):  
Allen M. Barnett ◽  
Terry M. Trumble ◽  
Gerald H. Negley ◽  
Sandra L. Rhoads ◽  
James B. McNeely ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Akihiko Nagata ◽  
Takeo Oku ◽  
Tsuyoshi Akiyama ◽  
Atsushi Suzuki ◽  
Yasuhiro Yamasaki ◽  
...  

Phthalocyanines/fullerene organic photovoltaic cells were fabricated and characterized. Effects of Au nanoparticle addition to a hole transfer layer were also investigated, and power conversion efficiencies of the photovoltaic cells were improved after blending the Au nanoparticle into PEDOT:PSS. Nanostructures of the Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructures and electronic property were discussed.


2021 ◽  
Vol 23 (7) ◽  
pp. 4178-4186
Author(s):  
Shiqiang Liu ◽  
Zhiwen Cheng ◽  
Yawei Liu ◽  
Xiaoping Gao ◽  
Yujia Tan ◽  
...  

Designing atomically dispersed metal catalysts for the nitrogen reduction reaction (NRR) is an effective approach to achieve better energy conversion efficiencies.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijiao Ma ◽  
Shaoqing Zhang ◽  
Jincheng Zhu ◽  
Jingwen Wang ◽  
Junzhen Ren ◽  
...  

AbstractNon-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.


Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


2021 ◽  
Author(s):  
Rubén A. Fritz ◽  
Yamil J. Colón ◽  
Felipe Herrera

The discovery and design of new materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies.


Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Eldred Lee ◽  
Kaitlin M. Anagnost ◽  
Zhehui Wang ◽  
Michael R. James ◽  
Eric R. Fossum ◽  
...  

High-energy (>20 keV) X-ray photon detection at high quantum yield, high spatial resolution, and short response time has long been an important area of study in physics. Scintillation is a prevalent method but limited in various ways. Directly detecting high-energy X-ray photons has been a challenge to this day, mainly due to low photon-to-photoelectron conversion efficiencies. Commercially available state-of-the-art Si direct detection products such as the Si charge-coupled device (CCD) are inefficient for >10 keV photons. Here, we present Monte Carlo simulation results and analyses to introduce a highly effective yet simple high-energy X-ray detection concept with significantly enhanced photon-to-electron conversion efficiencies composed of two layers: a top high-Z photon energy attenuation layer (PAL) and a bottom Si detector. We use the principle of photon energy down conversion, where high-energy X-ray photon energies are attenuated down to ≤10 keV via inelastic scattering suitable for efficient photoelectric absorption by Si. Our Monte Carlo simulation results demonstrate that a 10–30× increase in quantum yield can be achieved using PbTe PAL on Si, potentially advancing high-resolution, high-efficiency X-ray detection using PAL-enhanced Si CMOS image sensors.


Sign in / Sign up

Export Citation Format

Share Document