On-chip tunable wide ranged multiple output voltage reference

Author(s):  
Garima kapur ◽  
C.M. Markan ◽  
V. P. Pyara
2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


2001 ◽  
Vol 5 (4) ◽  
pp. 414-421 ◽  
Author(s):  
Dongkyung Nam ◽  
Yun Deuk Seo ◽  
Lae-Jeong Park ◽  
Cheol Hoon Park ◽  
Burnsup Kim

Author(s):  
SRIRANGANATHA SAGAR.K.N ◽  
POORNIMA N. ◽  
VIJAYA KUMAR. V

A 1.2-V 40-mA capacitor-free CMOS low-dropout regulator (LDO) for system-on-chip applications to reduce board space and external pins is presented. By utilizing damping-factor control frequency compensation on the advanced LDO structure, the proposed LDO provides high stability, as well as fast line and load transient responses, even in capacitorfree operation. The proposed LDO has been implemented in a tsmc65nm CMOS technology, and the total error of the output voltage due to line and load variations is less. Moreover, the output voltage can recover with ≈2.3μs for full load current changes. The power-supply rejection ratio at 1 MHz is 26 dB.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250007 ◽  
Author(s):  
KAUSHIK BHATTACHARYYA ◽  
P. V. RATNA KUMAR ◽  
PRADIP MANDAL

In this paper three embedded switched capacitor based DC–DC converters targeting Vdd/2, 2Vdd/3, and Vdd/3 output voltages have been designed with improved power efficiency and output voltage ripple. The performance of each of the converter is improved by nonoverlapped rotational time interleaving (NRTI) switching scheme. Current regulation scheme is included with each of the above NRTI switched capacitor converter to achieve better load and line regulation. The proposed converters are designed and simulated in a 0.18 μm n-well CMOS process with the total flying capacitance of 330 pF and load capacitor of 50 pF. The capacitance values are kept within on-chip implementable range. The maximum power efficiency and the output voltage ripple of the integrated NRTI DC–DC converters targeted for Vdd/2, 2Vdd/3 and Vdd/3 output generation are 71.5% and 5 mV, 69.23% and 13.27 mV and 58.09% and 10.5 mV, respectively.


Sign in / Sign up

Export Citation Format

Share Document