scholarly journals DeepTracks: Geopositioning Maritime Vehicles in Video Acquired from a Moving Platform

Author(s):  
Jianli Wei ◽  
Guanyu Xu ◽  
Alper Yilmaz
Keyword(s):  
2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


2017 ◽  
Vol 41 (5) ◽  
pp. 922-935
Author(s):  
HongJun San ◽  
JunSong Lei ◽  
JiuPeng Chen ◽  
ZhengMing Xiao ◽  
JunJie Zhao

In this paper, a 3-DOF translational parallel mechanism with parallelogram linkage was studied. According to the space vector relation between the moving platform and the fixed base, the direct and inverse position solutions of this mechanism was deduced through analytical method. In addition, the error of the algorithm was analyzed, and the algorithm had turned out to be effective and to have the satisfactory computational precision. On the above basis, the workspace of this mechanism was found through graphical method, which was compared with that of finding through Monte Carlo method, and there was the feasibility for analyzing the workspace of the mechanism by graphical method. The characteristic of the mechanism was analyzed by comparing the results of two analysis methods, which provided a theoretical basis for the application of the mechanism.


Author(s):  
Victor Romero-Cano ◽  
Juan I. Nieto ◽  
Gabriel Agamennoni

Robotica ◽  
2011 ◽  
Vol 30 (3) ◽  
pp. 449-456 ◽  
Author(s):  
M. F. Ruiz-Torres ◽  
E. Castillo-Castaneda ◽  
J. A. Briones-Leon

SUMMARYThis work presents the CICABOT, a novel 3-DOF translational parallel manipulator (TPM) with large workspace. The manipulator consists of two 5-bar mechanisms connected by two prismatic joints; the moving platform is on the union of these prismatic joints; each 5-bar mechanism has two legs. The mobility of the proposed mechanism, based on Gogu approach, is also presented. The inverse and direct kinematics are solved from geometric analysis. The manipulator's Jacobian is developed from the vector equation of the robot legs; the singularities can be easily derived from Jacobian matrix. The manipulator workspace is determined from analysis of a 5-bar mechanism; the resulting workspace is the intersection of two hollow cylinders that is much larger than other TPM with similar dimensions.


2014 ◽  
Vol 615 ◽  
pp. 57-62 ◽  
Author(s):  
Raquel Acero Cacho ◽  
Jose Antonio Albajez ◽  
José Antonio Yagüe-Fabra ◽  
Marta Torralba ◽  
Margarita Valenzuela ◽  
...  

The nanotechnology field has been developing strongly in recent years and ultra-precision measuring systems are nowadays required. A new two-dimensional moving platform with 50x50 mm range of travel, nanometer resolution and sub micrometer accuracy is being designed by the authors in order to be integrated with an Atomic Force Microscope (AFM). In this work the definition, design and experimental characterization of a homing sensor system for this 2D moving platform is presented. The homing sensor system will allow the generation of an absolute 2D reference for the platform (X-Y axis and θz rotation), defining an initial cero for the measuring system, which is based on laser encoders.


1991 ◽  
Vol 111 (sup481) ◽  
pp. 572-575 ◽  
Author(s):  
Ilmari Pyykkö ◽  
Heikki Aalto ◽  
Jukka Starck ◽  
Hisayoshi Ishizaki

Sign in / Sign up

Export Citation Format

Share Document