Test Methodology for Analysis of Coexistent Logic-Level Faults in NoC Channels

Author(s):  
Biswajit Bhowmik ◽  
Santosh Biswas ◽  
Jatindra Kumar Deka
Keyword(s):  
Author(s):  
Jenny Fan ◽  
Dave Mark

Abstract Metal interconnect defects have become a more serious yield detractor as backend process complexity has increased from a single layer to about 10 layers. This paper introduces a test methodology to monitor and localize the metal defects based on FPGA products. The test patterns are generated for each metal layer. The results not only indicate the severity of defects for each metal layer, but also accurately isolate open/short defects.


1998 ◽  
Author(s):  
R. Berriche ◽  
R.K. Lowry ◽  
M.I. Rosenfield

Abstract The present work investigated the use of the Vickers micro-hardness test method to determine the resistance of individual die to cracking. The results are used as an indicator of resistance to failure under the thermal and mechanical stresses of packaging and subsequent thermal cycling. Indentation measurements on die back surfaces are used to determine how changes in wafer backside processing conditions affect cracks that form around impressions produced at different loads. Test methodology and results obtained at different processing conditions are discussed.


Author(s):  
Ray Talacka ◽  
Nandu Tendolkar ◽  
Cynthia Paquette

Abstract The use of memory arrays to drive yield enhancement has driven the development of many technologies. The uniformity of the arrays allows for easy testing and defect location. Unfortunately, the complexities of the logic circuitry are not represented well in the memory arrays. As technologies push to smaller geometries and the layout and timing of the logic circuitry become more problematic the ability to address yield issue is becoming critical. This paper presents the added yield enhancement capabilities of using e600 core Scan Chain and Scan Pattern testing for logic debug, ways to interpret the fail data, and test methodologies to balance test time and acquiring data. Selecting a specific test methodology and using today's advanced tools like Freescale's DFT/FA has been proven to find more yield issues, earlier, enabling quicker issue resolution.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Fin O’Flaherty ◽  
Fathi Al-Shawi

AbstractThis study presents a detailed analysis of the lateral forces generated as a result of vertically applied loads to recycled plastic drainage kerbs. These kerbs are a relatively new addition to road infrastructure projects. When concrete is used to form road drainage kerbs, its deformation is minimum when stressed under heavy axle loads. Although recycled plastic kerbs are more environmentally friendly as a construction product, they are less stiff than concrete and tend to deform more under loading leading to a bursting type, lateral force being applied to the haunch materials, the magnitude of which is unknown. A method is proposed for establishing the distribution of these lateral forces resulting from deformation under laboratory test conditions. A load of 400 kN is applied onto a total of six typical kerbs in the laboratory in accordance with the test standard. The drainage kerbs are surrounded with 150 mm of concrete to the front and rear haunch and underneath as is normal during installation. The lateral forces exerted on the concrete surround as a result of deformation of the plastic kerbs are determined via a strain measuring device. Analysis of the test data allows the magnitude of the lateral forces to the surrounding media to be determined and, thereby, ensuring the haunch materials are not over-stressed as a result. The proposed test methodology and subsequent analysis allows for an important laboratory-based assessment of any typical recycled plastic drainage kerbs to be conducted to ensure they are fit-for-purpose in the field.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3988
Author(s):  
Fátima Ternero ◽  
Pedro M. Amaral ◽  
Jorge Cruz Fernandes ◽  
Luís Guerra Rosa

A type of disc-on-plate test methodology was used to determine the wear behavior of metallic binders employed in the manufacturing of diamond impregnated tools. The disc consists of a special circular wheel that allows the binder materials alone (i.e., without diamond, but sintered under conditions identical to those of the complete tool) to be tested against a plate of stone material under pre-determined testing conditions. The testing conditions are intended to be equivalent to those used in the industrial processes. Using plates of five types of granite and one type of marble, this work comprises wear tests of 15 different types of metallic binders and two sintering modes conducted under, at least, three different values of contact-force. The analysis of the results demonstrated that the wear of the binders can be related to their mechanical properties through an empirical expression. The larger the difference between the characteristics of the tribological pair (binder versus stone), the higher is the correlation between the experimental wear data and the values given by the empirical expression. The relationships presented in this work allow predicting the wear behavior of the binder, and therefore may help in the design process of diamond tools. There was a clear difference between the wear behavior of metallic binders when they were employed against the two main classes of stone under analysis (marble and granite).


Author(s):  
L. J. Yang

Wear rates obtained from different investigators could vary significantly due to lack of a standard test method. A test methodology is therefore proposed in this paper to enable the steady-state wear rate to be determined more accurately, consistently, and efficiently. The wear test will be divided into four stages: (i) to conduct the transient wear test; (ii) to predict the steady-state wear coefficient with the required sliding distance based on the transient wear data by using Yang’s second wear coefficient equation; (iii) to conduct confirmation runs to obtain the measured steady-state wear coefficient value; and (iv) to convert the steady-state wear coefficient value into a steady-state wear rate. The proposed methodology is supported by wear data obtained previously on aluminium based matrix composite materials. It is capable of giving more accurate steady-state wear coefficient and wear rate values, as well as saving a lot of testing time and labour, by reducing the number of trial runs required to achieve the steady-state wear condition.


Sign in / Sign up

Export Citation Format

Share Document