A priority scheduling algorithm for improving emergent data transmission rate in the body area networks

Author(s):  
Guangxia Xu ◽  
Qiang Song ◽  
Li Qiu ◽  
Chumeng Tian ◽  
Liu Yang
2021 ◽  
Vol 12 (2) ◽  
pp. 74-93
Author(s):  
Ravi Kumar Poluru ◽  
R. Lokeshkumar

Boosting data transmission rate in IoT with minimized energy is the research issue under consideration in recent days. The main motive of this paper is to transmit the data in the shortest paths to decrease energy consumption and increase throughput in the IoT network. Thus, in this paper, the authors consider delay, traffic rate, and density in designing a multi-objective energy-efficient routing protocol to reduce energy consumption via the shortest paths. First, the authors propose a cluster head picking approach that elects optimal CH. It increases the effective usage of nodes energy and eventually results in prolonged network lifetime with enhanced throughput. The data transmission rate is posed as a fitness function in the multi-objective ant lion optimizer algorithm (MOALOA). The performance of the proposed algorithm is investigated using MATLAB and achieved high convergence, extended lifetime, as well as throughput when compared to representative approaches like E-LEACH, mACO, MFO-ALO, and ALOC.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4238
Author(s):  
Yating Qu ◽  
Guoqiang Zheng ◽  
Honghai Wu ◽  
Baofeng Ji ◽  
Huahong Ma

Wireless body area networks will inevitably bring tremendous convenience to human society in future development, and also enable people to benefit from ubiquitous technological services. However, one of the reasons hindering development is the limited energy of the network nodes. Therefore, the energy consumption in the selection of the next hop must be minimized in multi-hop routing. To solve this problem, this paper proposes an energy efficient routing protocol for reliable data transmission in a wireless body area network. The protocol takes multiple parameters of the network node into account, such as residual energy, transmission efficiency, available bandwidth, and the number of hops to the sink. We construct the maximum benefit function to select the next hop node by normalizing the node parameters, and dynamically select the node with the largest function value as the next hop node. Based on the above work, the proposed method can achieve efficient multi-hop routing transmission of data and improve the reliability of network data transmission. Compared with the priority-based energy-efficient routing algorithm (PERA) and modified new-attempt routing protocol (NEW-ATTEMPT), the simulation results show that the proposed routing protocol uses the maximum benefit function to select the next hop node dynamically, which not only improves the reliability of data transmission, but also significantly improves the energy utilization efficiency of the node and prolongs the network lifetime.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1640 ◽  
Author(s):  
Thien Thi Thanh Le ◽  
Sangman Moh

With the development of wireless communication technology, wireless body area networks (WBANs) have become a fundamental support tool in medical applications. In a real hospital scenario, however, the interference between wireless medical devices and WBANs may cause a high packet drop rate and high latency, which is harmful to patients using healthcare services. Nonetheless, cognitive radio is a promising technology for sharing the precious spectrum, which has high efficiency of the wireless resource. Thus, WBANs with cognitive radio capability are also exploited. We propose a spectrum-aware priority-based link scheduling (SPLS) algorithm for cognitive radio body area networks (CRBANs) in a real hospital scenario. In SPLS, three channels are used: DataCh, EDataCh, and CtrlCh for normal data, emergency data, and control messages, respectively. To avoid collision during data transmission, neighboring CRBANs send messages regarding the channel state with CtrlCh before the scheduling. The CRBANs can share DataCh in the time domain for improving the throughput. The SPLS algorithm allows a CRBAN to access idle channels on the licensed and unlicensed spectrum according to the CRBAN traffic. Our simulation results show that the proposed SPLS outperformed the conventional scheme in terms of packet delivery ratio, system throughput, latency, and energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document