Mathematical model of the forced fluctuations of the prefabricated cutting tool elements in milling the spatial complex surfaces on the machines with numerical program control

Author(s):  
D.A. Malyshkin ◽  
A.M. Markov ◽  
E.Yu. Tatarkin
2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


2021 ◽  
Vol 13 (1) ◽  
pp. 140-148
Author(s):  
Andrіі Slabkyі ◽  
◽  
Olexandr Manzhilevskyy ◽  
Olexandr Polishchuk ◽  
◽  
...  

One of the methods of material processing is considered, which allows to obtain high geometric accuracy and low surface roughness of parts, namely their abrasive finishing. The high quality of machining of parts in this way is due to the use of coordinated relative movement of the workpiece and the cutting tool. According to the kinematic features, most lapping machines can be divided into two groups: machines with oscillating working motion and machines with rotating lapping motion. The machines of the first group are more common due to the simplicity of their design and versatility. However, the possibility of their use is limited by the size range of the workpieces and uneven wear of the cutting tool and, as a consequence, the uneven surface treatment of the part. The machines of the second group are considered the most versatile, as they allow processing a wide range of parts, varying in shape and size, but they are also not without such a disadvantage as uneven wear of the cutting tool with all the corresponding consequences. Improving the efficiency of abrasive finishing by complicating the trajectory of the relative movement of the tool and the part, ie the formation of a unique mutual working movement of the lapping and the movement of the workpiece, is one of the most common areas. The main disadvantage of equipment that provides processing of parts on this principle is, in most cases, limited regulation of the operating parameters of the cutting process, so this area remains promising and has broad prospects for development. The constructive scheme of the hydraulic-pulse flat-lapping machine offered in work thanks to a combination of advantages of the hydraulic-pulse drive with use of numerical program control will allow to provide unique mutual multi-movement of preparation and the lapping tool with a possibility of adjustment of its parameters in the course of processing. Purposeful choice of the shape and density of the trajectory of the working movement of the tool will form a micro relief of the treated surface with the necessary statistical parameters and low roughness.


2015 ◽  
Vol 760 ◽  
pp. 433-438 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming mathematical model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


2018 ◽  
Vol 224 ◽  
pp. 01078
Author(s):  
Nicolay V. Nosov ◽  
Andrey A. Cherepashkov

The article discusses the problems of computer aided design and technological preparation of production of complex shape parts on machines with numerical program control. An integrated technique for designing processes and control programs for CNC machines is proposed and described, using the technique of software-based referencing and modern electronic measuring tools.


2016 ◽  
Vol 16 (2) ◽  
pp. 103-114
Author(s):  
M. Prakash Babu ◽  
Balla Srinivasa Prasad

AbstractIn the present work investigation primarily focuses on identifying the presence of cutting tool vibrations during face turning process. For this purpose an online non-contact vibration transducer i. e. laser Doppler Vibrometer is used as part of a novel approach. The revisions in the values of cutting forces, vibrations and acoustic optic emission signals with cutting tool wear are recorded and analyzed. This paper presents a mathematical model in an attempt to understand tool lifeunder vibratory cutting conditions. Tool wear and cutting force data are collected in the dry machiningof AISI 1040 steel at different vibrationinduced test conditions. Identifying the correlation among tool wear, cutting forces and displacement due to vibration is a critical task in the present study. These results are used to predict the evolution of displacement and tool wear in the experiment. Specifically, the research tasks include: to provide an appropriate experimental data to prove the mathematical model of tool wear based on the influence of cutting tool vibrations in turning.The modeling is focused on demonstrating the scientific relationship between the process variables such as vibration displacement, vibration amplitude, feedrate, depth of cut and spindle speed while getting into account machine dynamics effect and the effects such as surface roughness and tool wear generated in the operation. Present work also concentrates on the improvement in machinability during vibration assisted turning with different cutting tools. The effect of work piece displacement due to vibration on the tool wear is critically analyzed. Finally, tool wear is established on the basis of the maximum displacement that can be tolerated in a process for an effective tool condition monitoring system.


Sign in / Sign up

Export Citation Format

Share Document