Adaptive node scheduling under accuracy constraint forwireless sensor nodes with multiple bearings-only sensing units

2015 ◽  
Vol 51 (2) ◽  
pp. 1547-1557 ◽  
Author(s):  
Amirhossein Nayebi-Astaneh ◽  
Naser Pariz ◽  
Mohammad-bagher Naghibi-Sistani
2005 ◽  
Vol 16 (01) ◽  
pp. 3-17 ◽  
Author(s):  
JIE WU ◽  
SHUHUI YANG

In this paper, we study the problem of maintaining sensing coverage by keeping a small number of active sensor nodes and using a small amount of energy consumption in wireless sensor networks. This paper extends a result from 22 where only uniform sensing range among all sensors is used. We adopt an approach that allows non-uniform sensing ranges for different sensors. As opposed to the uniform sensing range node scheduling model in 22, two new energy-efficient models with different sensing ranges are proposed. Our objective is to minimize the overlapped sensing area of sensor nodes, thus to reduce the overall energy consumption by sensing and communication to prolong the whole network's life time, and at the same time to achieve the high ratio of coverage. Extensive simulation is conducted to verify the effectiveness of our node scheduling models.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771982631 ◽  
Author(s):  
Zhangquan Wang ◽  
Yourong Chen ◽  
Banteng Liu ◽  
Haibo Yang ◽  
Ziyi Su ◽  
...  

To improve the regional coverage rate and network lifetime of heterogeneous wireless sensor networks, a sensor node scheduling algorithm for heterogeneous wireless sensor networks is proposed. In sensor node scheduling algorithm, heterogeneous perception radius of sensor node is considered. Incomplete coverage constraint and arc coverage interval are analyzed. Regional coverage increment optimization model, arc coverage increment optimization model, and residual energy optimization model are proposed. Multi-objective scheduling model is established using weight factors and integrated function. Furthermore, the heuristic method is proposed to solve the multi-objective optimization model, and scheduling scheme of heterogeneous sensor nodes is obtained. When the network is in operation for a period of time, some sensor nodes are invalid and relevant regions are uncovered. The repair method is proposed to wake up sleep sensor nodes and repair the coverage blind area. The simulation results show that if keeping the same regional coverage rate, sensor node scheduling algorithm improves network lifetime, increases number of living sensor nodes, and keeps average node energy consumption at a low level. Under certain conditions, sensor node scheduling algorithm outperforms DGREEDY, two-tiered scheduling, and minimum connected cover.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6127 ◽  
Author(s):  
Yun Xu ◽  
Wanguo Jiao ◽  
Mengqiu Tian

In the wireless sensor network, the lifetime of the network can be prolonged by improving the efficiency of limited energy. Existing works achieve better energy utilization, either through node scheduling or routing optimization. In this paper, an efficient solution combining node scheduling with routing protocol optimization is proposed in order to improve the network lifetime. Firstly, to avoid the redundant coverage, a node scheduling scheme that is based on a genetic algorithm is proposed to find the minimum number of sensor nodes to monitor all target points. Subsequently, the algorithm prolongs the lifetime of the network through choosing redundant sleep nodes to replace the dead node. Based on the obtained minimum coverage set, a new routing protocol, named Improved-Distributed Energy-Efficient Clustering (I-DEEC), is proposed. When considering the energy and the distance of the sensor node to the sink, a new policy choosing the cluster head is proposed. To make the energy load more balanced, uneven clusters are constructed. Meanwhile, the data communication way of sensor nodes around the sink is also optimized. The simulation results show that the proposed sensor node scheduling algorithm can reduce the number of redundant sensor nodes, while the I-DEEC routing protocol can improve the energy efficiency of data transmission. The lifetime of the network is greatly extended.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4106 ◽  
Author(s):  
Yonghua Xiong ◽  
Jing Li ◽  
Manjie Lu

Coverage and network lifetime are two fundamental research issues in visual sensor networks. In some surveillance scenarios, there are some critical locations that demand to be monitored within a designated period. However, with limited sensor nodes resources, it may not be possible to meet both coverage and network lifetime requirements. Therefore, in order to satisfy the network lifetime constraint, sometimes the coverage needs to be traded for network lifetime. In this paper, we study how to schedule sensor nodes to maximize the spatial-temporal coverage of the critical locations under the constraint of network lifetime. First, we analyze the sensor node scheduling problem for the spatial-temporal coverage of the critical locations and establish a mathematical model of the node scheduling. Next, by analyzing the characteristics of the model, we propose a Two-phase Spatial-temporal Coverage-enhancing Method (TSCM). In phase one, a Particle Swarm Optimization (PSO) algorithm is employed to organize the directions of sensor nodes to maximize the number of covered critical locations. In the second phase, we apply a Genetic Algorithm (GA) to get the optimal working time sequence of each sensor node. New coding and decoding strategies are devised to make GA suitable for this scheduling problem. Finally, simulations are conducted and the results show that TSCM has better performance than other approaches.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2010 ◽  
Vol E93-B (11) ◽  
pp. 2912-2924
Author(s):  
Tian HAO ◽  
Masayuki IWAI ◽  
Yoshito TOBE ◽  
Kaoru SEZAKI

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document