Buckling Behavior of Nb3Sn Strand Caused by Electromagnetic Force and Thermal Mismatch in ITER Cable-In-Conduit Conductor

2017 ◽  
Vol 27 (7) ◽  
pp. 1-11 ◽  
Author(s):  
Donghua Yue ◽  
Xingyi Zhang ◽  
You-He Zhou
1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


2013 ◽  
Vol 416-417 ◽  
pp. 428-432
Author(s):  
Li Shan ◽  
Xiao Wei Cheng ◽  
Yong Fang ◽  
Xiao Hua Bao

This paper investigates the vibration which caused by electromagnetic on the stator end-winding of the large dry submersible motor. Firstly, the electromagnetic field which included transition state and steady state is researched by 3-D FEM. Secondly, the electromagnetic force which lead to vibrations of end-winding is calculated by numerical method, it can be obtained that where endured the largest force density along the slant part of end-winding. Finally, the radial displacement and the axial displacement of the slant part which caused by vibrations is studied, the analysis results show that the axial displacement is larger than the amplitude of radial displacement. It indicates that the slant part of end-winding will be more easily damaged at axial direction than radial direction.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1195
Author(s):  
Jianhua Zhao ◽  
Yongqiang Wang ◽  
Xuchao Ma ◽  
Sheng Li ◽  
Dianrong Gao ◽  
...  

As a new type of suspension bearing, the magnetic liquid double suspension bearing (MLDSB) is mainly supported by electromagnetic suspension and supplemented by hydrostatic support. At present, the MLDSB adopts the regulation strategy of “electromagnetic-position feedback closed-loop, hydrostatic constant-flow supply” (referred to as CFC mode). In the equilibrium position, the external load is carried by the electromagnetic system, and the hydrostatic system produces no supporting force. Thus, the carrying capacity and supporting stiffness of the MLDSB can be reduced. To solve this problem, the double closed-loop control strategy of “electromagnetic system-force feedback inner loop and hydrostatic-position feedback outer loop” (referred to as DCL mode) was proposed to improve the bearing performance and operation stability of the MLDSB. First, the mathematical models of CFC mode and DCL mode of the single DOF supporting system were established. Second, the real-time variation laws of rotor displacement, flow/hydrostatic force, and regulating current/electromagnetic force in the two control modes were plotted, compared, and analyzed. Finally, the influence law of initial current, flow, and controller parameters on the dynamic and static characteristic index were analyzed in detail. The results show that compared with that in CFC mode, the displacement in DCL mode is smaller, and the adjustment time is shorter. The hydrostatic force is equal to the electromagnetic force in DCL mode when the rotor returns to the balance position. Moreover, the system in DCL mode has better robustness, and the initial flow has a more obvious influence on the dynamic and static characteristic indexes. This study provides a theoretical basis for stable suspension control and the safe and reliable operation of the MLDSB.


2021 ◽  
Vol 286 ◽  
pp. 129236
Author(s):  
Tongju Wang ◽  
Yongping Lei ◽  
Peng Zhao ◽  
Jian Lin ◽  
Hanguang Fu

Sign in / Sign up

Export Citation Format

Share Document