A robust, real-time control scheme for multifunction myoelectric control

2003 ◽  
Vol 50 (7) ◽  
pp. 848-854 ◽  
Author(s):  
K. Englehart ◽  
B. Hudgins
Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2462
Author(s):  
Cosmin-Constantin Mihai ◽  
Ciprian Lupu

Graphics processing units and video cards have seen a surge of usage in domains other than graphics computers, due to advances in hardware and software technologies; however, little uptake has been in the domain of systems engineering and real time control. This research article will demonstrate the use of video cards in multimodel adaptive robust control, using openGL and compute shaders. A software simulation will show the behavior of the adaptive robust multimodel control scheme as the target process is exposed to both parametric and structural disturbances and will show the viability of using graphics processing units in real time systems control.


2021 ◽  
Author(s):  
SangKyeun Kim ◽  
Ricardo Shousha ◽  
SangHee Hahn ◽  
Andrew Nelson ◽  
Josiah Wai ◽  
...  

Abstract Mitigation of deleterious heat flux from edge-localized modes (ELMs) on fusion reactors is often attempted with 3D perturbations of the confining magnetic fields. However, the established technique of resonant magnetic perturbations (RMPs) also degrades plasma performance, complicating implementation on future fusion reactors. In this paper, we introduce an adaptive real-time control scheme as a viable approach to simultaneously achieve both ELM-free states and recovered high-confinement (βN~1.91$ and HN~0.9), demonstrating successful handling of a volatile complex system through adaptive measures. We show that, by exploiting a salient hysteresis process to adaptively minimize the RMP strength, stable ELM suppression can be achieved while actively encouraging confinement recovery. This is made possible by a self-organized transport response in the plasma edge which reinforces the confinement improvement through a widening of the ion pedestal and promotes control stability, in contrast to the deteriorating effect on performance observed in standard RMP experiments. These results establish the real-time approach as an up-and-coming solution towards an optimized ELM-free state, which is an important step for the operation of ITER and reactor-grade tokamak plasmas. Notably, the real-time adaptive control scheme introduced here provides a path towards economic fusion reactors by maximizing the fusion gain while minimizing damage to machine components.


2017 ◽  
Vol 66 (12) ◽  
pp. 10911-10922 ◽  
Author(s):  
Mauro Salazar ◽  
Camillo Balerna ◽  
Philipp Elbert ◽  
Fernando P. Grando ◽  
Christopher H. Onder

1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


Sign in / Sign up

Export Citation Format

Share Document