scholarly journals Quantifying Gaze Behavior During Real-World Interactions Using Automated Object, Face, and Fixation Detection

2018 ◽  
Vol 10 (4) ◽  
pp. 1143-1152 ◽  
Author(s):  
Leanne Chukoskie ◽  
Shengyao Guo ◽  
Eric Ho ◽  
Yalun Zheng ◽  
Qiming Chen ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Frowin Fasold ◽  
André Nicklas ◽  
Florian Seifriz ◽  
Karsten Schul ◽  
Benjamin Noël ◽  
...  

The performance and the success of a group working as a team on a common goal depends on the individuals’ skills and the collective coordination of their abilities. On a perceptual level, individual gaze behavior is reasonably well investigated. However, the coordination of visual skills in a team has been investigated only in laboratory studies and the practical examination and knowledge transfer to field studies or the applicability in real-life situations have so far been neglected. This is mainly due to the fact that a methodological approach along with a suitable evaluation procedure to analyze the gaze coordination within a team in highly dynamic events outside the lab, is still missing. Thus, this study was conducted to develop a tool to investigate the coordinated gaze behavior within a team of three human beings acting with a common goal in a dynamic real-world scenario. This team was a (three-person) basketball referee team adjudicating a game. Using mobile eye-tracking devices and an indigenously designed software tool for the simultaneous analysis of the gaze data of three participants, allowed, for the first time, the simultaneous investigation of the coordinated gaze behavior of three people in a highly dynamic setting. Overall, the study provides a new and innovative method to investigate the coordinated gaze behavior of a three-person team in specific tasks. This method is also applicable to investigate research questions about teams in dynamic real-world scenarios and get a deeper look at interactions and behavior patterns of human beings in group settings (for example, in team sports).


2010 ◽  
Vol 2 (7) ◽  
pp. 726-726 ◽  
Author(s):  
G. J. Zelinsky

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Felix Wang ◽  
Julian Wolf ◽  
Mazda Farshad ◽  
Mirko Meboldt ◽  
Quentin Lohmeyer

Eye tracking (ET) has shown to reveal the wearer’s cognitive processes using the measurement of the central point of foveal vision. However, traditional ET evaluation methods have not been able to take into account the wearers’ use of the peripheral field of vision. We propose an algorithmic enhancement to a state-of-the-art ET analysis method, the Object-Gaze Distance (OGD), which additionally allows the quantification of near-peripheral gaze behavior in complex real-world environments. The algorithm uses machine learning for area of interest (AOI) detection and computes the minimal 2D Euclidean pixel distance to the gaze point, creating a continuous gaze-based time-series. Based on an evaluation of two AOIs in a real surgical procedure, the results show that a considerable increase of interpretable fixation data from 23.8 % to 78.3 % of AOI screw and from 4.5 % to 67.2 % of AOI screwdriver was achieved, when incorporating the near-peripheral field of vision. Additionally, the evaluation of a multi-OGD time series representation has shown the potential to reveal novel gaze patterns, which may provide a more accurate depiction of human gaze behavior in multi-object environments.


Author(s):  
Hayati B. Joshi ◽  
Walter Cybis ◽  
Eva Kehayia ◽  
Philippe S. Archambault ◽  
Anouk Lamontagne

Author(s):  
Amanda J. Haskins ◽  
Jeff Mentch ◽  
Thomas L. Botch ◽  
Caroline E. Robertson

AbstractVision is an active process. Humans actively sample their sensory environment via saccades, head turns, and body movements. Yet, little is known about active visual processing in real-world environments. Here, we exploited recent advances in immersive virtual reality (VR) and in-headset eye-tracking to show that active viewing conditions impact how humans process complex, real-world scenes. Specifically, we used quantitative, model-based analyses to compare which visual features participants prioritize over others while encoding a novel environment in two experimental conditions: active and passive. In the active condition, participants used head-mounted VR displays to explore 360º scenes from a first-person perspective via self-directed motion (saccades and head turns). In the passive condition, 360º scenes were passively displayed to participants within the VR headset while they were head-restricted. Our results show that signatures of top-down attentional guidance increase in active viewing conditions: active viewers disproportionately allocate their attention to semantically relevant scene features, as compared with passive viewers. We also observed increased signatures of exploratory behavior in eye movements, such as quicker, more entropic fixations during active as compared with passive viewing conditions. These results have broad implications for studies of visual cognition, suggesting that active viewing influences every aspect of gaze behavior – from the way we move our eyes to what we choose to attend to – as we construct a sense of place in a real-world environment.Significance StatementEye-tracking in immersive virtual reality offers an unprecedented opportunity to study human gaze behavior under naturalistic viewing conditions without sacrificing experimental control. Here, we advanced this new technique to show how humans deploy attention as they encode a diverse set of 360º, real-world scenes, actively explored from a first-person perspective using head turns and saccades. Our results build on classic studies in psychology, showing that active, as compared with passive, viewing conditions fundamentally alter perceptual processing. Specifically, active viewing conditions increase information-seeking behavior in humans, producing faster, more entropic fixations, which are disproportionately deployed to scene areas that are rich in semantic meaning. In addition, our results offer key benchmark measurements of gaze behavior in 360°, naturalistic environments.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jan Drewes ◽  
Sascha Feder ◽  
Wolfgang Einhäuser

How vision guides gaze in realistic settings has been researched for decades. Human gaze behavior is typically measured in laboratory settings that are well controlled but feature-reduced and movement-constrained, in sharp contrast to real-life gaze control that combines eye, head, and body movements. Previous real-world research has shown environmental factors such as terrain difficulty to affect gaze; however, real-world settings are difficult to control or replicate. Virtual reality (VR) offers the experimental control of a laboratory, yet approximates freedom and visual complexity of the real world (RW). We measured gaze data in 8 healthy young adults during walking in the RW and simulated locomotion in VR. Participants walked along a pre-defined path inside an office building, which included different terrains such as long corridors and flights of stairs. In VR, participants followed the same path in a detailed virtual reconstruction of the building. We devised a novel hybrid control strategy for movement in VR: participants did not actually translate: forward movements were controlled by a hand-held device, rotational movements were executed physically and transferred to the VR. We found significant effects of terrain type (flat corridor, staircase up, and staircase down) on gaze direction, on the spatial spread of gaze direction, and on the angular distribution of gaze-direction changes. The factor world (RW and VR) affected the angular distribution of gaze-direction changes, saccade frequency, and head-centered vertical gaze direction. The latter effect vanished when referencing gaze to a world-fixed coordinate system, and was likely due to specifics of headset placement, which cannot confound any other analyzed measure. Importantly, we did not observe a significant interaction between the factors world and terrain for any of the tested measures. This indicates that differences between terrain types are not modulated by the world. The overall dwell time on navigational markers did not differ between worlds. The similar dependence of gaze behavior on terrain in the RW and in VR indicates that our VR captures real-world constraints remarkably well. High-fidelity VR combined with naturalistic movement control therefore has the potential to narrow the gap between the experimental control of a lab and ecologically valid settings.


2018 ◽  
Vol 41 ◽  
Author(s):  
Michał Białek

AbstractIf we want psychological science to have a meaningful real-world impact, it has to be trusted by the public. Scientific progress is noisy; accordingly, replications sometimes fail even for true findings. We need to communicate the acceptability of uncertainty to the public and our peers, to prevent psychology from being perceived as having nothing to say about reality.


Sign in / Sign up

Export Citation Format

Share Document