Thermomechanical Analysis and Characterization of a Press-Pack Structure for SiC Power Module Packaging Applications

Author(s):  
Yafan Zhang ◽  
Tag Hammam ◽  
Ilja Belov ◽  
Torsten Sjogren ◽  
Mietek Bakowski ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1097 ◽  
Author(s):  
Juan Ivorra-Martinez ◽  
Jose Manuel-Mañogil ◽  
Teodomiro Boronat ◽  
Lourdes Sanchez-Nacher ◽  
Rafael Balart ◽  
...  

Eco-efficient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as filler/reinforcement. These WPCs were prepared with different amounts of lignocellulosic fillers (wt %), namely 10, 20 and 30. The mechanical characterization of these WPCs showed an important increase in their stiffness with increasing the wt % ASF content. In addition, lower tensile strength and impact strength were obtained. The field emission scanning electron microscopy (FESEM) study revealed the lack of continuity and poor adhesion among the PHBH-ASF interface. Even with the only addition of 10 wt % ASF, these green composites become highly brittle. Nevertheless, for real applications, the WPC with 30 wt % ASF is the most attracting material since it contributes to lowering the overall cost of the WPC and can be manufactured by injection moulding, but its properties are really compromised due to the lack of compatibility between the hydrophobic PHBH matrix and the hydrophilic lignocellulosic filler. To minimize this phenomenon, 10 and 20 phr (weight parts of OLA-Oligomeric Lactic Acid per one hundred weight parts of PHBH) were added to PHBH/ASF (30 wt % ASF) composites. Differential scanning calorimetry (DSC) suggested poor plasticization effect of OLA on PHBH-ASF composites. Nevertheless, the most important property OLA can provide to PHBH/ASF composites is somewhat compatibilization since some mechanical ductile properties are improved with OLA addition. The study by thermomechanical analysis (TMA), confirmed the increase of the coefficient of linear thermal expansion (CLTE) with increasing OLA content. The dynamic mechanical characterization (DTMA), revealed higher storage modulus, E’, with increasing ASF. Moreover, DTMA results confirmed poor plasticization of OLA on PHBH-ASF (30 wt % ASF) composites, but interesting compatibilization effects.


Author(s):  
Shiladitya Chakravorty ◽  
Bahgat Sammakia ◽  
Varaprasad Calmidi

Improved performance of semiconductor devices in recent years has resulted in consequent increase in power dissipation. Hence thermal characterization of components becomes important from an overall thermal design perspective of the system. This study looks at a high performance non-isolated point of load power module (a DC to DC converter) meant for advanced computing and server applications. Thermal characteristics of the module were experimentally analyzed by placing the power module on a bare test board (with no insulation) inside a wind tunnel with thermocouples attached to it. There were three devices on this module that dissipate power. There were two FETs (Field Effect Transistors) and an inductor which can be considered as sources. The consolidated power dissipation from the module was calculated by measuring the input voltage and input current while keeping the output voltage and current constant. Temperatures at various points on the module and the test card were recorded for different air flow velocities and overall power dissipation. Subsequently this set up was numerically analyzed using a commercially available computational fluid dynamics (CFD) code with the objective of comparing the results with experimental data previously obtained.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2913
Author(s):  
Francesco Gamardella ◽  
Sara Muñoz ◽  
Silvia De la Flor ◽  
Xavier Ramis ◽  
Angels Serra

A new type of tetraphenylborate salts derived from highly basic and nucleophilic amines, namely 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and triazabicyclodecene (TBD), was applied to the preparation of networked poly(thiourethane)s (PTUs), which showed a vitrimer-like behavior, with higher stress-relaxation rates than PTUs prepared by using dibutyl thin dilaurate (DBTDL) as the catalyst. The use of these salts, which release the amines when heated, instead of the pure amines, allows the formulation to be easily manipulated to prepare any type of samples. The materials prepared from stoichiometric mixtures of hexamethylene diisocyanate (HDI), trithiol (S3) and with a 10% of molar excess of isocyanate or thiol were characterized by FTIR, thermomechanical analysis, thermogravimetry, stress-relaxation tests and tensile tests, thus obtaining a complete thermal and mechanical characterization of the materials. The recycled materials obtained by grinding the original PTUs and hot-pressing the small pieces in the optimized time and temperature conditions were fully characterized by mechanical, thermomechanical and FTIR studies. This allowed us to confirm their recyclability, without appreciable changes in the network structure and performance. From several observations, the dissociative interchange trans-thiocarbamoylation mechanism was evidenced as the main responsible of the topological rearrangements at high temperature, resulting in a vitrimeric-like behavior.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
J. L. Feng ◽  
C. Y. Yue ◽  
K. S. Chian

AbstractA series of bismaleimide systems containing aliphatic backbone chain have been synthesized and investigated. Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Thermomechanical analysis (TMA), rheometry and tensile test were used to characterize the thermal and mechanical properties. It was noted that backbone chain length and odd-even effect affected properties. As the chain length increases, the curing peak temperature, gel temperature of BMI all increase, but the melting point, glass transition and moisture absorption decrease. The melting points of BMI-3,5,7 reduced most significantly. The tensile properties were affected by odd even effect significantly. BMI-3,5,7 with odd number of carbons have less stress and strain than those of even ones.


2010 ◽  
Vol 7 (14) ◽  
pp. 1008-1013 ◽  
Author(s):  
Tsuyoshi Funaki ◽  
Hiroyasu Inoue ◽  
Masashi Sasagawa ◽  
Takashi Nakamura

Sign in / Sign up

Export Citation Format

Share Document