A Resilient and Power-Efficient Automatic-Power-Down Sense Amplifier for SRAM Design

2008 ◽  
Vol 55 (10) ◽  
pp. 1031-1035 ◽  
Author(s):  
Ya-Chun Lai ◽  
Shi-Yu Huang
2013 ◽  
Vol 60 (11) ◽  
pp. 776-780 ◽  
Author(s):  
Sang-Yun Kim ◽  
Jong-Min Baek ◽  
Dong-Jin Seo ◽  
Jae-Koo Park ◽  
Jung-Hoon Chun ◽  
...  

2013 ◽  
Vol 22 (07) ◽  
pp. 1350062 ◽  
Author(s):  
AJAY KUMAR SINGH ◽  
MAH MENG SEONG ◽  
C. M. R. PRABHU

This paper presents a new power efficient single ended sense amplifier (SA). The proposed circuit is based on the direct current voltage conversion technique. It has been simulated using Microwind3 and DSCH3 tools (advanced BSIM 4 level) for 90 nm CMOS technology in terms of power consumption, sense time and results were compared to other circuits. The proposed SA circuit consumes more than 50% less power and gives 90% faster sensing speed compared to other circuits. The lower power consumption is due to lower leakage current, lower voltage drop on bit-line and faster speed is due to positive feedback of the circuit. The proposed circuit is more robust against any process and temperature variation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kumar Neeraj ◽  
Jitendra Kumar Das

PurposeHigh throughput and power efficient computing devices are highly essential in many autonomous system-based applications. Since the computational power keeps on increasing in recent years, it is necessary to develop energy efficient static RAM (SRAM) memories with high speed. Nowadays, Static Random-Access Memory cells are predominantly liable to soft errors due to the serious charge which is crucial to trouble a cell because of fewer noise margins, short supply voltages and lesser node capacitances.Design/methodology/approachPower efficient SRAM design is a major task for improving computing abilities of autonomous systems. In this research, instability is considered as a major issue present in the design of SRAM. Therefore, to eliminate soft errors and balance leakage instability problems, a signal noise margin (SNM) through the level shifter circuit is proposed.FindingsBias Temperature Instabilities (BTI) are considered as the primary technology for recently combined devices to reduce degradation. The proposed level shifter-based 6T SRAM achieves better results in terms of delay, power and SNM when compared with existing 6T devices and this 6T SRAM-BTI with 7 nm technology is also applicable for low power portable healthcare applications. In biomedical applications, Body Area Networks (BANs) require the power-efficient SRAM design to extend the battery life of BAN sensor nodes.Originality/valueThe proposed method focuses on high speed and power efficient SRAM design for smart ubiquitous sensors. The effect of BTI is almost eliminated in the proposed design.


2005 ◽  
Vol 14 (05) ◽  
pp. 939-951 ◽  
Author(s):  
ZHI-HUI KONG ◽  
KIAT-SENG YEO ◽  
CHIP-HONG CHANG

A novel micro-power current sense amplifier employing a cross-coupled current-mirror configuration is presented. The circuit is designed for low-voltage low-power SRAM applications. Its sensing speed is independent of the bit-line capacitances and is almost insensitive to the data-line capacitances. Extensive post-layout simulation results based on a 1.8 V/0.18 μm CMOS technology from Chartered Semiconductor Manufacturing Ltd. (CHRT) have verified that the new sense amplifier promises a much sought-after power-efficient advantage and a note-worthy power-delay product superiority over the conventional and recently reported sense amplifier circuits. These attributes of the proposed sense amplifier make it judiciously appropriate for use in the contemporary high-complexity regime, which incessantly craves for low-power characteristics.


2016 ◽  
Vol 70 (10) ◽  
pp. 1395-1402 ◽  
Author(s):  
Xu Wang ◽  
Yuanzhi Zhang ◽  
Chao Lu ◽  
Zhigang Mao

Sign in / Sign up

Export Citation Format

Share Document